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Abstract 

With the rising significance of medical imaging in cancer diagnosis, Magnetic 
Resonance Imaging (MRI) has emerged as a pivotal tool for detecting brain tumors. 
This report tests an approach proposed by Ilhan U., & Ilhan A. [3] aimed at 
distinctly delineating cancer-affected tissues. Furthermore, this report discusses 
modifications to the preprocessing and post-processing steps, wherein various 
reasonable approaches were tested and the one yielding the best performance was 
selected. The primary objective is to provide doctors clear, detailed observations for 
improved tumor diagnosis. Comparative analysis reveals that the proposed 
methodology outperforms existing approaches like Otsu, presenting a more effective 
and precise solution for brain tumor segmentation. 

Introduction to brain tumors and different types of MRI 
images 

Tumor is an uncontrolled growth of cancer cells in any part of the body. 
Tumors are of different types and have different characteristics and different 
treatments. At present, brain tumors are classified as primary brain tumors and 
metastatic brain tumors. The former begin in the brain and tend to stay in the 
brain, the latter begin as a cancer elsewhere in the body and spreading to the brain. 
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Brain tumors are divided into two types: benign and malignant. In fact, the most 
widely used grading scheme has been issued by the World Health Organization 
(WHO)[1]. It classifies brain tumors into grade I to IV. In general, grade I and 
grade II are benign brain tumor (low-grade); grade III and grade IV are malignant 
brain tumor (high-grade). Usually, if low-grade brain tumor is not treated, it is 
likely to deteriorate to high-grade brain tumor. Therefore, brain tumor are seriously 
endangering people’s lives and early discovery and treatment have become a 
necessity. In the clinical aspect, treatment options for brain tumor include surgery, 
radiation therapy or chemotherapy. 

Along with the advance of medical imaging, imaging modalities play an important 
role in the evaluation of patients with brain tumors and have a significant impact 
on patient care. Recent years, the emerging new imaging modalities, such as X-Ray, 
Ultrasonography, Computed Tomography (CT), Magneto Encephalo Graphy (MEG), 
Electro Encephalo Graphy (EEG), Positron Emission Tomography (PET), Single-
Photon Emission Computed Tomography (SPECT), and Magnetic Resonance 
Imaging (MRI), not only show the detailed and complete aspects of brain tumors, 
but also improve clinical doctors to study the mechanism of brain tumors at the aim 
of better treatment. Therefore, the evaluation of brain tumors with imaging 
modalities is now one of the key issues of radiology departments. MRI is a non-
invasive and good soft tissue contrast imaging modality, which provides 
invaluable information about shape, size, and localization of brain 
tumors without exposing the patient to a high ionization radiation [2]. 
MRI is attracting more and more attentions for the brain tumor diagnosis in the 
clinical. In current clinical routine, the images of different MRI sequences are 
employed for the diagnosis and delineation of tumor compartments. These sequence 
images include T1-weighted MRI (T1w), T1-weighted with gadolinium contrast MRI 
(T1gd), T2-weighted MRI (T2w), FLuid-Attenuated Inversion Recovery (FLAIR), 
etc. Figure 1 shows an horizontal slice of the four standard sequences for a tumor: 
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Figure 1: (FLAIR, T1w, T1gd, T2w MRIs)



T1-gd sequence images can make the brain tumor borders become brighter because 
the contrast agent accumulates there due to the disruption of the blood-brain 
barrier in the proliferative brain tumor region. In these sequence images, the 
necrotic core and the active cell region can be distinguished easily (Figure 2). 
In T2w, the edema region can appear brighter than other sequence images of MRI. 
Since the signal of water molecules is suppressed in the imaging process of FLAIR, 
FLAIR is regarded as a highly effective sequence image to help separate the edema 
region from the CSF. 

Due to the large amount of brain tumor images that are currently being generated 
in the clinics, it is not possible for clinicians to manually annotate and segment 
these images in a reasonable time. Hence, the automatic segmentation has become 
inevitable. Brain tumor segmentation is to segment abnormal tissues such as active 
cells, necrotic core, and edema from normal brain tissues including GM, WM, and 
CSF. 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Figure 2: necrotic core, active cell 
region and edema



Literature review 

In the world of image processing and segmentation, there are several techniques to 
segment brain tumors. 

Thresholding algorithms constitute a fundamental approach whereby pixels in 
an image are partitioned into foreground and background based on their intensity 
levels relative to a specified threshold value. These algorithms are characterized by 
their simplicity and efficiency, making them suitable for various applications where 
clear intensity disparities exist between objects and background regions. [3] is the 
one that is used in this report. 

Contour-based algorithms, on the other hand, leverage the concept of 
delineating object boundaries through the extraction of continuous curves or 
contours that encapsulate the desired objects. These algorithms focus on identifying 
transitions in intensity or color gradients within the image to delineate object 
boundaries accurately [4]. 

Lastly, the utilization of K-means clustering presents an alternative approach 
wherein pixels are grouped into clusters based on their feature similarity, often in 
terms of intensity values. K-means clustering facilitates the partitioning of an image 
into distinct regions or classes, allowing for the segmentation of objects based on 
their inherent features rather than explicit thresholding. Each of these techniques 
contributes distinct advantages and capabilities to the field of image segmentation, 
catering to diverse application scenarios and image characteristics [5]. 

Dataset used 

The data set consists of 750 multiparametric-magnetic resonance images (mp-MRI) 
from patients diagnosed with either glioblastoma or lower-grade glioma. The 
sequences used were native T1-weighted (T1), post-Gadolinium (Gd) contrast T1-
weighted (T1-Gd), native T2-weighted (T2), and T2 Fluid-Attenuated Inversion 
Recovery (FLAIR). The corresponding target ROIs were the three tumor sub-
regions, namely edema, enhancing, and non-enhancing tumor. The Brain data set 
contains the same cases as the 2016 and 2017 Brain Tumor Segmentation (BraTS) 
challenges [6]. 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Segmentation steps 
 

1. For the preprocessing stage, it was involved a function for adjusting the 
contrast of the input brain MRI image. You achieve this by examining the 
histogram of the image and expanding its intensity range based on what the 
histogram tells you. This process helps to enhance the visual quality of the 
image and improve slightly the accuracy of subsequent processing steps. 

2. Segmentation using the proposed thresholding algorithm: in this 
method, sum of unique pixel values excluding zeros (black pixels) are divided by 
the count of unique pixel values. By this operation, the average gray value 
(threshold value) is calculated to convert the grayscale image to binary image 

3. After obtaining the binary segmented image, I applied a median filter. The 
median filter helps in reducing noise in the form of “salt and pepper” of the 
segmented regions, resulting in a more refined segmentation output. The median 
filter is the most commonly used non-linear filter. In this filter, the median pixel 
value in the neighbourhood is calculated and the middle pixel value in the 
neighbourhood is replaced by the calculated median pixel value. While 
calculating the median pixel value, all the pixel values in the neighbourhood are 
first sorted in ascending order, and then the median pixel is the one used to 
substitute the center pixel. 
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Figure 3: a brief 
summary of the stages 
used for segment the 
tumor
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Figure 4: example of segmentation on one of the best performing images from the BRATS 
dataset

Figure 5: on the left the 3D segmented tumor, on the right the ground-truth 
tumor



Evaluation and fine tuning process 

To quantify in an objective way the goodness of the segmentation process, I used 
these 4 metrics: accuracy, DICE, Intersection over Union (IoU) and the 
difference of volumes between ground-truth and segmented tumor. 

Accuracy is a measure of the overall correctness of the segmentation, calculated as 
the ratio of correctly classified pixels to the total number of pixels in the image. 

Dice coefficient quantifies the overlap between the segmented region and the ground 
truth region, calculated as twice the intersection of the segmented and ground truth 
regions divided by the sum of their areas. A Dice coefficient of 1 indicates perfect 
overlap, while 0 indicates no overlap. 

Intersection over Union (IoU), also known as the Jaccard Index, measures the 
similarity between the segmented and ground truth regions, calculated as the ratio 
of the intersection area to the union area of the two regions. IoU ranges from 0 to 1, 
where 1 indicates perfect overlap and 0 indicates no overlap.  

Regarding the fine-tuning process, my first mission was to figure out which of the 
four images would be the best for this particular segmentation technique. 
To do that, I checked out the four different metrics mentioned before. Here's what I 
found: 
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Figure 6: comparison between the four MRI imaging 
modalities given



The first observation we can extract from these bar plots is that, as expected, this 
algorithm tends to suffer from under-segmentation (as indicated by the positive 
difference volume in most of the cases). Here's the chain of thoughts I followed for 
choosing the right image. First off, T1-w consistently scored the lowest in all four 
metrics, so it was quickly ruled out. Given that this is a threshold algorithm and 
not a contour-based one, T1-gd isn't the ideal choice in this scenario. This is 
because it primarily highlights the edges rather than the entire tumor area. 
Ultimately, I decided to go with T2w over FLAIR images because it exhibits 
significantly less over-segmentation, as evidenced by the difference in volumes. 

The second goal was to find the best parameters for the median filter and for 
the image contrast stretching functions, so I treated the upper bound for 
contrast stretching and the dimensions of the median kernel filter as variables to 
fine-tune, aiming to obtain the optimal values for them. Therefore, test2.m iterated 
over various combinations of these parameters and selected reasonable values for the 
upper contrast stretching and the dimensions of the median filter kernel. 
Subsequently, I plotted an heatmap for each metric used to determine the best-
performing combination of parameters: 
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Figure 7: fine-tuning heatmaps to determine the best performing parameters



As observed, the kernel dimension appears to be the primary driver 
influencing all four metrics. Based on the heatmap analysis, I opted for a 
kernel dimension of 15. Conversely, the specific value of the upper limit for 
contrast stretching seems to have minimal impact. Therefore, I selected 0.7 as the 
optimal choice, as it resulted in the least discrepancy between the volume of the 
segmented tumor and the label given. 

In the end, after fine-tuning the parameters of our custom thresholding 
segmentation algorithm, I compared this custom thresholding approach with 
the standard Otsu algorithm. The Otsu algorithm is commonly used in various 
applications for finding a threshold value for binarizing images. Here are the results 
of the comparison: 

Upon reviewing these bar plots, it's evident that custom thresholding 
outperforms Otsu thresholding across all metrics. However, to be honest, 
this comparison may not be entirely fair. In paper [3], only accuracy was mentioned, 
which can be misleading as it tends to yield higher values anyway. When 
considering more appropriate metrics such as IoU or DICE coefficient, it becomes 
clear that the Otsu method yields nearly zero values. This indicates that Otsu fails 
completely to segment tumors, which is noticeable also by inspecting the 
resulting segmentation visually: 
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Figure 8: comparison between custom thresholding algorithm VS Otsu



 

In addition, I attempted to incorporate preprocessing steps before the segmentation by 
applying an image sharpener like a 3D Laplacian filter [7]. However, the results did 
not align with the benchmark obtained before. All four performance metrics were lower 
compared to when this stage was omitted, so this option was discarded. An explanation for 
this is that since this is not a counter-based algorithm, sharpening the image is not useful 
in this case. 

A similar attempt was made using an average filter, to explore whether applying a low 
pass filter before the segmentation step could yield improved results. However, the outcome 
mirrored the previous attempt. 
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Figure 9: comparison between custom thresholding algorithm VS Otsu



Conclusions 

The custom thresholding algorithm produces acceptable results in terms of 
detecting the tumor’s location, although it suffers from under-
segmentation issues. 

While traditional image processing algorithms for segmenting tumors are now 
largely dismissed, they can still complement deep neural network architectures. This 
new thresholding algorithm could serve as a fundamental block of a more complex 
structure involving deep neural networks for segmentation. Its ability to focus 
attention on smaller tumor areas could enable deep learning algorithms to 
concentrate their efforts more effectively. 
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