
Predictive Analytics for Software Project
Management

Authors:
Mattia Tritto
Rossella Tritto

Project Report:
Software Architecture and Pattern Design

Contents
1 Introduction 2

2 Literature Review 3

3 Methodology 4

4 Machine Learning Model 6
4.1 Generalities . 6
4.2 Data Collection and Initial Trials . 6
4.3 Feature Engineering and Preprocessing . 6
4.4 Model Development . 6
4.5 Data Augmentation and Further

Improvements . 7
4.6 Model Deployment . 8

5 Software Architecture 9
5.1 Overall Architecture . 9
5.2 Functional Requirements . 10
5.3 Non-Functional Requirements . 10
5.4 Tech Stack . 12

5.4.1 FastAPI . 12
5.4.2 Uvicorn . 12
5.4.3 Pydantic . 12
5.4.4 Pandas, NumPy, and SciPy . 12
5.4.5 Scikit-learn (sklearn) . 13
5.4.6 Joblib . 13
5.4.7 Streamlit . 13
5.4.8 Docker . 13
5.4.9 Google Cloud Platform (GCP) . 13

5.5 Frontend Service Structure . 14
5.6 Backend Service Structure . 16
5.7 Report Service Structure . 17
5.8 DevSecOps Principles Used . 17

6 Use Case Example 18
6.1 Input Parameters . 18
6.2 Results of the Estimation . 20

7 Conclusions 21

8 Future Work 22

1

1 Introduction
Predictive analytics has emerged as a powerful tool to assist project managers in esti-
mating outcome and enabling better decision-making.
This project aims to develop a predictive analytics system to support planning and man-
agement in software projects. By leveraging historical data on project attributes, this
system will generate values for completion times, costs and adjusted function points.

The project focuses on building predictive models using various machine learning tech-
niques, including regression, decision trees, neural network and upport vectormachines.
The predictive models will be integrated into a user-friendly web application, where
users can input project details and receive key project metrics, such as estimated cost
and completion date. Additionally, the application provides visualizations of historical
project data, helping users understand trends and make informed comparisons.

The report is organized as follows. Chapter 2 provides a Literature Review of exist-
ing methods and frameworks in predictive analytics for software project management.
Chapter 3 details the Methodology employed. Chapter 4 focuses on the Machine Learn-
ing Model development, including initial trials, feature engineering, model building and
analysis of performance metrics. In Chapter 5, the Software Architecture of the sys-
tem is described, covering functional and non-functional requirements, as well as the
tech stack used, including all frameworks to enables application deployment. Chapter
6 shows a use case of the developed application. Finally, Chapters 6 and 7 present the
Conclusions and potential Future Work to further enhance the system further.

2

2 Literature Review
Accurate estimation of effort, cost and duration is crucial for the success of software
projects. Numerous studies have explored techniques and models to improve predic-
tion accuracy in these areas.

Traditional approaches, such as those outlined by Kitchenham and Taylor [4], focused
on cost estimationmodels for software development and they set a foundation for this
type of analysis. Similarly, Borade [1] reviewed general effort and cost estimation tech-
niques, highlighting the need for robust methods to address the uncertainties in soft-
ware projects. Also Kitchenham et al. [3] conducted a comprehensive study on estima-
tion accuracy in software maintenance and development, identifying key factors influ-
encing prediction reliability.
In more recent work, Molokken and Jorgensen [5] provided an extensive review of soft-
ware effort estimation surveys, underlining common challenges and biases that affect
estimation outcomes.

With the spread of machine learning techniques, research has shifted toward leveraging
predictive models for more accurate estimates. Zakaria et al. [8] explored the applica-
tion ofmachine learning to software project estimation, finding that these techniques of-
fer improvements over traditional models. Rahman, Goncalves, and Sarwar [6] reviewed
available datasets for software effort estimation, emphasizing the importance of high-
quality data for training accurate models. Based on this, Rahman et al. [7] conducted
an empirical analysis of machine learning methods for estimation, demonstrating the
effectiveness of models such as neural networks and regression.

Recent developments in large language models have further expanded predictive ca-
pabilities. Carpenter, Wu, and Eisty [2] studied the use of these models for predicting
software project costs and durations, suggesting that they offer new possibilities to im-
prove estimation accuracy in complex projects.

To sum up, these studies highlight the evolution of estimation techniques from tradi-
tional statistical models to advanced machine learning approaches, showing the poten-
tial for predictive analytics to enhance software project management.

3

3 Methodology
This chapter describes the process followed to develop the system for software project
estimation. The methodology consists of six key phases, a visual representation of this
process is shown in Figure 1.

Figure 1: Project Process

1. Paper Research
The project began with a review of existing literature to understand the current
state of software project estimation techniques. This research phase aimed to
identify established methods, common challenges and recent advancements in
predictive analytics with machine learning. The findings from this literature review
are detailed in Section 2.

2. Dataset Screening
We searched for datasets related to software project estimation from both aca-
demic sources, such as research papers and public repositories like GitHub. Ini-
tially, we collected ten datasets. However, not all datasets met the criteria needed
for our analysis. We applied exclusion criteria to ensure data quality and rele-
vance. For example, one dataset contained only six projects, which was too small.
Two datasets lacked the AFP metric, which was a critical feature for our analy-
sis, and another dataset did not include ”Duration,” a core feature for estimat-
ing project timelines. Additionally, two datasets contained outdated features that
were no longer relevant to modern software development (for example CPU time
constraints, which were specific to programming practices in the 1990s). After this
screening process, we used four datasets that met all criteria and were suitable for
our analysis: China, Desharnais, Kemerer and Kitchenham. Figure 2 illustrates the
dataset screening process and the filtering criteria used.

3. Machine Learning Model
After obtaining the datasets, we developed and trained the machine learning mod-
els used for project prediction. We implemented a variety of models, including re-
gression models, random forest, and other algorithms to identify the most effec-
tive approach. The details of this phase, with the model selection and evaluation
metrics, are discussed in depth in Section 5

4. User Interface
To provide a user-friendly way to interact with the predictive models, we devel-
oped a web application using Streamlit. This application enables users to input

4

Figure 2: Dataset Screening

project details and receive real-time predictions on key metrics, including project
duration, cost, AFP and estimated end date. Additionally, the application includes a
historical data section, allowing users to view insights from past projects. This fea-
ture includes visualizations of important features from previous projects, helping
users understand trends and make informed decisions. The web interface design
prioritizes simplicity and clarity to ensure ease of use.

5. Containerization
To facilitate deployment and maintain consistency across different environments,
we encapsulated the application and its dependencies in a Docker container. This
approach ensures that the application can be easily replicated, with all necessary
libraries and configurations packaged together. This choice make the system more
portable and resilient to environmental changes.

6. Cloud Deployment Finally, we deployed the application on Google Cloud Platform
(GCP) to make it cloud-native, enhancing its accessibility and scalability. Deploying
on GCP allows the application to be accessed remotely by users and ensures easy
updates and maintenance.

Through this structured methodology, we were able to develop a predictive analytics
system that combines machine learning models with a user-friendly interface, robust
containerization, and scalable cloud deployment.

5

4 Machine Learning Model
4.1 Generalities
In order to make duration and costs predictions, we developed a machine learning
model aimed at predicting the hours required to complete a software project (and in-
directly, also total costs). The model uses various input variables, particularly Adjusted
Function Points (AFP), as predictors. Our initial approach involved combining multiple
datasets to increase the robustness of the model, followed by experimenting with sev-
eral machine learning techniques to achieve the best predictive accuracy.

4.2 Data Collection and Initial Trials
The initial step involved unifying datasets based on their common columns: AFP, Effort,
and Duration. This resulted in a combined dataset featuring these three variables. How-
ever, after testing several machine learning models on the unified dataset, the highest
R² score achieved was 0.24, indicating limited predictive accuracy.
We hypothesized that this lowperformancewas due to highheterogeneityacrossdatasets,
meaning that the datasets differed significantly in characteristics and therefore may not
have been suitable for direct combination. This insight led us to pivot our approach and
focus on each dataset individually.
Following the initial trials, we identified the CHINA dataset as the most promising, as it
yielded the highest R² score among all datasets tested. Subsequently, we centered our
efforts on developing a model specifically for this dataset.

4.3 Feature Engineering and Preprocessing
To tailor the dataset for cost prediction, we performed feature selection, retaining only
columns most relevant to the task: AFP, Effort, Input, Output, Enquiry, and File Interface.
These features were directly related to the goal of predicting software project costs.
In the preprocessing phase, we normalized data using the median and interquartile
range (IQR), as this method proved to be more effective than using mean and standard
deviation. Normalization was essential to ensure that all features contributed propor-
tionally to model training.

4.4 Model Development
We tested a range of regression models, including:

• Linear Regression with Regularization

• Random Forests

• Neural Networks

6

• Support Vector Machines

Among these, the Random Forest model delivered the best results, with an R² score
of 0.67—a considerable improvement over earlier attempts, though still not ideal. We
hypothesized that the limited dataset size (500 rows) may have contributed to this rela-
tively low score.

4.5 Data Augmentation and Further
Improvements

To address data limitations, we explored data augmentation techniques. Themost effec-
tive approach involved adding Gaussian noise to each row, generating new data points
that were similar to, but not identical to, actual software projects. This method helped
expand the training dataset.
After augmenting the dataset, we conducted a grid search to explore a range of models
and hyperparameters.

Model Hyperparameter Values Tested
Linear Regression with L2 reg (Ridge) alpha [10, 100, 1000]

Support Vector Machine (SVR)
C [1, 0.1, 0.01]
epsilon [0.5, 1, 10]
kernel [rbf]

Random Forest Regressor
n_estimators [110, 120, 130, 140]
max_depth [10, 20, None]
min_samples_split [2, 5, 7, 10]
min_samples_leaf [1, 2, 5]

Neural Network (MLPRegressor)

hidden_layer_sizes [(64, 32, 16), (64, 32, 16, 8), (32, 64, 32),
(64, 128, 64), (64, 32, 64), (64, 32, 16, 32, 64)]

activation [relu, tanh]
solver [adam]
alpha [0.01]
learning_rate_init [0.1]

Table 1: Hyperparameters and values tested in Grid Search for different models

This systematic search identified an optimal Random Forest configuration with the fol-
lowing parameters:

• Tree Depth: Limited to 20

• Minimum Samples per Leaf : 1

• Number of Trees: 130

7

Model Best Parameters Test MSE Test RMSE Test R2 Score
Linear Regression with L2 reg (Ridge) {‘alpha’: 10} 3004216.32 1733.27 0.21

Support Vector Machine (SVR) {‘C’: 1, ‘epsilon’: 0.5,
‘kernel’: ‘rbf’}

4372954.41 2091.16 0.15

Random Forest Regressor {‘max_depth’: 20,
‘min_samples_leaf’: 1,
‘min_samples_split’: 2,
‘n_estimators’: 130}

414774.87 644.03 0.89

Neural Network (MLPRegressor) {‘activation’: ‘relu’,
‘alpha’: 0.01, ‘hid-
den_layer_sizes’:
(64, 128, 64), ‘learn-
ing_rate_init’: 0.1,
‘solver’: ‘adam’}

2558901.99 1599.66 0.32

Table 2: Grid Search Results: Best Parameters and Evaluation Metrics for Each Model

In reality, we also identified a Random Forest model with an R² score of 0.94. How-
ever, this model did not have limited tree depth, increasing the risk of overfitting. Conse-
quently, we selected the model with a 20-depth limit, which achieved a reliable balance
between accuracy and generalizability.

4.6 Model Deployment
Once the optimal RandomForestmodel was finalized, we saved it using the Joblib library,
enabling easy loading for future use. This allows the server tomake real-time predictions
based on new input data. Additionally, we stored themedian and IQR values used during
normalization to ensure consistent preprocessing of any new input data.

8

5 Software Architecture
5.1 Overall Architecture
From the beginning, we adopted a top-down approach, first defining the overall system
architecture and the interactions between components, and then developing each part
individually.
The system architecture is as a cloud-native solution, consisting of three distinct mi-
croservices that communicate with one another with HTTP REST APIs. All microservices
were dockerized and deployed on Google Cloud Platform using Google Cloud Run, Google
Cloud Build, and the Artifacts Registry API.
The first component is the frontend service, which is developed as a Streamlit applica-
tion. This service serves as the sole interface exposed to users, allowing them to interact
with the system. When necessary, it sends requests to the backend service to retrieve
either predictions or a generated DOCX report.
The backend service operates as a server, responsible for handling incoming HTTP re-
quests. If a user requests a report, the backend acts as a mediator, forwarding this
request to a specialized internal service known as the report service.
The report service is dedicated solely to processing requests related to report gener-
ation. It handles a single type of HTTP request: when it receives a request from the
backend, it generates the DOCX report and sends it back to the backend. Subsequently,
the backend forwards the report to the frontend service, completing the cycle of inter-
action and ensuring that the user receives the requested information.

Figure 3: Software Architecture

9

Figure 4: Sequence Diagram for different use cases

5.2 Functional Requirements
Data Input
Users shall input various data, including input and output values, enquiries, internal and
external logic files, GSC values for AFP calculation, and the number of developers.

Data Processing
The system shall calculate AFP and use a machine learning model for predictions based
on the provided data.

Result Display and Export
Results shall be displayed in graphs and tables. Users shall be able to generate and
export customizable reports in DOCX format, which can be further adjusted before con-
verting to PDF for stakeholder sharing.

5.3 Non-Functional Requirements
Performance
Objective: Minimize latency to ensure a smooth user experience.

10

• All services are hosted on a Local Area Network (LAN) within the Google Cloud Plat-
form (GCP) to reduce network latency for HTTP requests.

• The frontend, built using the Streamlit framework, enhances performance with its
efficient Document Object Model (DOM) rendering.

• Service is available with a latency less than 0.5 seconds.

Scalability
Objective: Handle varying user loads by scaling resources efficiently.

• A cloud-native, microservices architecture supports both vertical and horizontal
scaling, adjusting automatically based on request volume.

Security
Objective: Protect system integrity and prevent unauthorized access or data vulnerabil-
ities.

• The server logs every request to monitor access.
• Inputs are validated using the Pydantic library to guard against injection attacks
and other input-related vulnerabilities.

• A package dependency audit was conducted to ensure the absence of security
flaws in third-party libraries.

Usability
Objective: Provide an intuitive user experience that requires minimal learning.

• A streamlined and straightforward interface guides users directly to core function-
alities without unnecessary steps or complexity.

Reliability
Objective: Ensure consistent performance and accuracy in various scenarios.

• Each component undergoes automated unit testing, verifying that it behaves as
expected across all inputs.

Maintainability
Objective: Simplify system maintenance and minimize dependencies between compo-
nents.

• The cloud-native architecture with loosely coupledmicroservices allows each com-
ponent to be updated or modified independently without affecting the others.

11

Portability
Objective: Allowflexibility in deployment across different environments and cloud providers.

• Docker containerswere used to package all components, making it straightforward
to migrate the system between cloud providers if necessary.

5.4 Tech Stack
5.4.1 FastAPI
FastAPI is a modern, fast (high-performance) web framework for building RESTful APIs
with Python. It is designed to create RESTful APIs quickly and efficiently. Key features
include:

• Asynchronous support: Allows for handling many requests concurrently, suitable
for high-performance applications.

• Automatic OpenAPI documentation: Simplifies API testing and exploration.

• Datavalidation: Built-in support for validating request data using Pydanticmodels.

5.4.2 Uvicorn
Uvicorn is an ASGI server that runs Python web applications. It is a lightning-fast server
designed for asynchronous frameworks like FastAPI.

5.4.3 Pydantic
Pydantic is a data validation library for Python that enables developers to define data
models and automatically validates data against those models. Notable features in-
clude:

• Data validation: Ensures input data adheres to specified types and formats, reduc-
ing runtime errors.

• Ease of use: Straightforward model definition and data validation, allowing for
rapid development.

• Integrationwith FastAPI: Pydanticmodels can be seamlessly integratedwith FastAPI
to validate request and response data.

5.4.4 Pandas, NumPy, and SciPy
These powerful libraries are used for data manipulation and analysis in Python, facili-
tating data manipulation on datasets.

12

5.4.5 Scikit-learn (sklearn)
Scikit-learn is a widely usedmachine learning library in Python that provides simple and
efficient tools for data mining and analysis. Key features include:

• Wide range of algorithms: Includes various supervised and unsupervised learn-
ing algorithms, such as regression, random forests, support vector machines, and
neural networks.

• Model evaluation: Provides utilities for model selection and evaluation, including
cross-validation and metrics.

• Hyperparameter tuning: Supports GridSearchCV for systematic testing of hyperpa-
rameter combinations to optimize model performance.

5.4.6 Joblib
Joblib is a lightweight library for saving and loading Python objects, particularly useful
in machine learning workflows involving large data.

5.4.7 Streamlit
Streamlit is an open-source app framework formachine learninganddata scienceprojects
that simplifies the creation of interactive web applications. Key features include:

• Rapid prototyping: Allows developers to turn data scripts into shareable web apps
for quick iteration and testing.

• Interactive visualizations: Supports the creation of interactive graphs and visual-
izations for effective communication of insights.

5.4.8 Docker
Docker is a platform for developing, shipping, and running applications in containers.
Key benefits include:

• Isolation: Each container runs independently, ensuring applications do not inter-
fere with each other.

• Portability: Containers can be moved easily between environments without com-
patibility issues.

• Scalability: Facilitates horizontal scaling by deploying multiple containers.

5.4.9 Google Cloud Platform (GCP)
Google Cloud Platform is a suite of cloud computing services offered by Google, provid-
ing various tools for deploying, managing, and scaling applications.

13

5.5 Frontend Service Structure
The frontend of the application, built using Streamlit, provides an interactive interface to
users. The application is structured across three main pages: Home, Predictive Analysis
and Project History, accessible through a sidebar menu to make easy for users navigate
the application. Below, we define each page’s features and functionality.

Home Page
The Home page serves as the landing page for the application, introducing users to the
platform, named “CodeAnalytics”. The page displays a brief description of the applica-
tion’s purpose and it includes the application logo. The home page layout can be seen
in Figure 5.

Figure 5: Home Page

Predictive Analysis Page
The Predictive Analysis page allows users to input project-specific details and obtain
predictions on key metrics such as cost, duration, AFP and estimated end date.
Users are required to enter values for the functional components:

• External Inputs (EI): These refer to user inputs that the system must validate or
process, such as data entered through forms

• External Outputs (EO): These represent outputs produced by the system, such as
reports or other data that the system sends out to the user

• External Inquiries (EQ): These are interactive inputs that query the system and ex-
pect a response, like prompt

14

• Internal Logical Files (ILF): These files or data structures are maintained within the
system for processing, such as internal databases

• External Interface Files (EIF): These are files managed by external systems but used
by the application.

Then, there are some general characteristics about the project:

• Number of Developers

• Hourly Wage

• Start Date

To calculate AFP, the model considers some adjustment factors that impact project com-
plexity. Each factor can be rated on a scale from0 to 5, where 0 indicates “Not Present/No
Influence” and 5 indicates “Strong, Generalized Influence.” The adjustment factors are:

• Data Communication: Indicates the complexity involved in data transfer and com-
munication across components.

• Distributed Processing: Refers to the need for processing across multiple systems,
increasing project complexity.

• Performance: indicates the importance of performance in the project

• Use of Configuration: Indicates the degree of configuration required.

• Transaction Rate: Measures the frequency and complexity of system transactions.

• Online Data Entry: Relates to the amount of direct data input required.

• User Efficiency: Indicate the importance of user efficiency in the application

• Online Update: Refers to requirements for real-time updates.

• Computational Complexity: Reflects the need for complex computations.

• Reusability: Indicates how much the code and components can be reused.

• Installation Ease: Reflects the effort required to install the system.

• Operation Ease: Indicates the ease of system operation.

• Multiple Sites: Measures the need to support multiple locations.

• Ease of Modification: Reflects how easy it is to make changes post-deployment.

After submitting the form, the application displays the following predicted metrics:

• Cost: The estimated cost of the project based on the inputs provided

• Duration: The predicted time required to complete the project

15

• Adjusted Function Points: A measure of the project’s functional size

• Estimated End Date: The end date of the project based on the start date and du-
ration.

Additionally, a timeline graph visualizes the project schedule from the start date to the
predicted end date.

Project History Page
The Project History page provides an overview of key metrics from past projects, help-
ing users to understand historical trends. This page is divided into several sections, as
follows:

• Data Highlights displays summary statistics (mean and standard deviation) for the
functional components of past projects, specifically EI, EO, EIF, ILF and EQ. These
statistics provide users with a quick overview of typical values for functional com-
ponents across completed projects.

• Duration Overview shows the minimum, maximum, and average duration values of
past projects, giving users an idea of project lengths.

• Graphs: To help users explore historical data further, the Project History page in-
cludes the following graphs:

– AFP vs. Duration Pair Plot: This scatter plot shows the relationship between
AFP and project duration, allowing users to observe potential correlations be-
tween project size and time requirements

– AFP Histogram: This histogram displays the distribution of AFP values across
past projects, illustrating the range and frequency of project sizes

– Duration Histogram: This histogram shows the distribution of project dura-
tions, allowing users to see typical project timelines and identify any outliers.

5.6 Backend Service Structure
The backend servicewas built using FastAPI, with themain entry points defined in app.py.
This file initializes the FastAPI application.
The backend features three primary endpoints:

• The /predict endpoint, which accepts input data via a POST request and returns
predictions for project duration, costs and AFP.

• The /data endpoint, which serves a CSV dataset file useful for the Streamlit appli-
cation for building interactive graphs on the client side.

• The /report endpoint, which forwards requests to the report service to generate a
DOCX report.

16

The application uses Pydantic models defined in models.py for input validation. The
AFPModel establishes the structure used for calculating the AFP, while the InputModel
extends it with fields for hourly pay and effort. This ensures that all incoming data ad-
heres to specified constraints, such as non-negative integers and valid weight ranges.
In utils.py, utility functions are implemented to perform essential calculations. The
calculate_afp function computes AFP using the input counts and weights, while the
predict_duration_and_costs function loads a pre-trainedmachine learningmodel (saved
as a pickle file) to predict duration based on the calculated AFP. This function constructs
a DataFrame from the input data and returns the predicted duration, cost and AFP.

5.7 Report Service Structure
The Report service is designed to handle a single POST request for generating DOCX re-
ports. The main entry point for this service is defined in app.py, which initializes the
service and manages incoming requests.
This service features one primary endpoint: the generate_report endpoint, which ac-
cepts parameters necessary for constructing the report. The inputmodel is defined using
Pydantic in schemas/ReportData.py, ensuring that all required fields are validated. This
model includes fields for project details, cost estimates, and other relevant information,
enforcing constraints such as valid formats and mandatory entries.
Upon receiving a request, the service processes the input data, performs any necessary
calculations, and generates a DOCX report using the validated parameters. The report
is then sent back as a response to the backend service, ready to be forwarded to the
frontend.

5.8 DevSecOps Principles Used
In this project, several key DevSecOps principles were applied to ensure a secure, effi-
cient, and standardized development process.
Testing played a crucial role, with unit tests implemented to validate both the function-
ality of the prediction endpoint and the correct serving of static files.
Security compliance was enforced through multiple measures:
logging was used to track requests and responses for auditing purposes, and data val-
idation using Pydantic models ensured that only properly structured and safe inputs
were processed by the API.
The project was containerized, which enabled seamless deployment across different en-
vironments (development, testing, production), ensuring consistency and isolation.
To maintain a uniform code style, the Black auto formatter was integrated to run on ev-
ery commit, normalizing the code regardless of contributions from multiple developers.

17

6 Use Case Example
In this section, we provide a practical example of using the application developed. For
this test, we input the parameters of the current project (developing CodeAnalytics itself)
into the application’s form and analyze the results obtained.

6.1 Input Parameters
The parameters entered are:

• External Inputs: 3
These components contribute directly to user interaction and the application’s
functionality. CodeAnalytics includes three primary external inputs:

1. Function Components Section
2. Project-Specific Inputs, which includes inputs like the number of developers,
hourly rate, and start date

3. Adjustment Factor Section, comprising 14 inputs for the adjustment factor that
refine the estimates based on project complexity.

• External Queries: 2
These queries enable users to retrieve and visualize data, so we assign a count of
two external queries:

1. Report Generation to generate a summary of calculated metrics.
2. Graphical Outputs, which provides visual representations of data, such as dis-
tribution of duration and AFP.

• External Outputs: 2
External outputs involve information generated by the application to display or
share with the user. In this project, we have:

1. Form output, which provides immediate results based on the user’s inputs.
2. Dataset statistics, which summarize important feature of the dataset.

• Internal Logical Files: 1
We have one main internal logical file: a dataset that contains all the information
necessary to estimate project parameters.

• External Interface Files: 0
Since all data is processed within the application and there are no dependencies
on external applications or files, this count remains zero.

• Hourly Rate: 10€
We assume an hourly rate of 10 euros, which is the cost assigned to each devel-
oper’s work hour.

18

• Number of Developers: 2
For this project, we assume a small development team of two individuals who col-
laboratively work on developing the system.

For calculating the AFP, we employed predefined weights for each of the functional com-
ponents (EI, ILF, EIF, EQ and EO). The default weights, illustrated in Figure 6, standardize
these calculations to provide consistent and comparable results.

Figure 6: Default Weights for Functional Components

The application includes a series of adjustment factors, each rated on a scale based
on the influence on this specific project:

• Data Communication: 4
Rated as 4 due to the presence of multiple microservices in the architecture that
need to communicate to fulfill the application’s functionality. Each interaction be-
tween services adds complexity, making data communication a key factor for the
project.

• Distributed Data Processing: 0
Rated as 0 because all services run within a single environment. Even though there
are multiple microservices, most of the processing remains centralized.

• Performance: 4
Performance is rated as 4, given that interactions between microservices can in-
troduce latency, impacting response time, making performance a critical project
factor.

• Heavily Use of Configuration: 0
No additional configuration exists for this application, resulting in a score of 0.

• Transaction Rate: 1
Rated as 1 since the system does not require constant real-time updates; it pro-
cesses requests as they come, with minimal transaction demand.

19

• Online Data Entry: 2
Rated as 2 due to the presence of online forms that allow users to input data di-
rectly.

• End User Efficiency: 4
Rated 4 due to the application’s design, which provides essential data, improving
user experience and efficiency.

• Online Update: 0
No interface changes occur dynamically, so this factor is rated as 0.

• Computational Complexity: 2
Rated as 2, based on the complexity of using the Random Forest algorithm with
numerous trees for estimation.

• Reusability: 5
With a highly modular design based on microservices, the application’s code is
reusable, resulting in a high rating.

• Installation Ease: 0
Rated 0 as it is a web application requiring no installation.

• Operation Ease: 3
Rated 3, as the application is straightforward to operate and manage.

• Multiple Sites: 1
With only three main pages, this application scores a 1 in this category.

• Facility Change: 4
A modular, cloud-native design allows easy adaptation and scaling, resulting in a
high facility in modification.

6.2 Results of the Estimation
Based on the inputs and adjustment factors described, the web application generated
the following estimates for the development of this project:

• Total Cost of Project: 5,055.00€
• Total Duration: 337 hours
• Adjusted Function Points (AFP): 38
• Projected Start Date: 14/12/2024
• Projected End Date: 25/01/2025

This case study demonstrates the practical application of the estimation tool for soft-
ware project planning. The model takes into account various project characteristics,
resulting in realistic estimations of cost, duration and function points. These estimates
closely match the actual work requirements for this type of project, showing a high ac-
curacy.

20

7 Conclusions
In summary, the application has effectively fulfilled all specified functional and non-
functional requirements. This successful achievement reflects the comprehensive plan-
ning and execution that guided the development process.

The top-down approach that was used throughout the development lifecycle proved to
be exceptionally efficient. By breaking down the project into manageable components,
this strategy not only facilitated a clear understanding of the overall objectives but also
resulted in a significant savings of time. This efficiency is particularly notable in how it
allowed team members to focus on specific elements of the application without losing
sight of the larger project goals.

Furthermore, the implementation of a microservices architecture played a critical role
in enhancing the development process. This architectural choice enabled the division
of coding tasks among multiple developers, fostering a collaborative environment that
allowed team members to work simultaneously on different components of the appli-
cation. As a result, the integration of these components was streamlined, leading to a
more cohesive final product.

Regarding the predictive capabilities of the application, the RandomForestmodel demon-
strated an impressive R2 score of 0.89. This high score signifies that the predictions
generated by the application are reliable.

21

8 Future Work
Looking ahead, the next crucial step for this project is to integrate the software into
a real-world scenario. This integration will allow the application to be utilized by an
actual organization, providing a practical context in which its capabilities can be thor-
oughly evaluated and refined.
One of the key advantages of implementing this framework within a company that uses
its own dataset of previous projects is the potential for significantly enhancing the reli-
ability of the predictions made by the application. Currently, the dataset utilized during
the development of this project was sourced from an unknown company, which may
follow distinct methodologies and processes for executing their projects. As a result,
the insights derived from this external dataset might not fully align with the operational
practices or challenges faced by other organizations.
By tailoring the predictive model to specific organizational data, we anticipate that the
application will yield more accurate and relevant forecasting outcomes. This customiza-
tion process will involve not only the integration of historical project data unique to the
company but also an iterative evaluation of the model’s performance based on real-
world feedback.

Moreover, future work may also explore the incorporation of additional features and
variables that are relevant to the specific industry or project types of the organization.
This could involve analyzing qualitative factors that influence project outcomes, thereby
providing a more holistic view of the elements that contribute to project success.

In conclusion, the successful integration of the software into a real-world scenario rep-
resents a pivotal next step that has the potential to transform theoretical predictions
into actionable insights, driving more effective decision-making within organizations.

22

References
[1] Borade. Software Project Effort and Cost Estimation Techniques. IJARCSSE.

[2] J. Carpenter, C.-Y. Wu, and N. U. Eisty. Leveraging Large LanguageModels for Predicting
Cost and Duration in Software Engineering Projects, Sept. 2024. arXiv:2409.09617 [cs].

[3] B. Kitchenham, S. Lawrence Pfleeger, B. McColl, and S. Eagan. An empirical study of
maintenance and development estimation accuracy. Journal of Systems and Soft-
ware, 64(1):57–77, Oct. 2002.

[4] B. A. Kitchenham and N. Taylor. Software project development cost estimation. Jour-
nal of Systems and Software, 5(4):267–278, Nov. 1985.

[5] K. Molokken and M. Jorgensen. A review of software surveys on software effort es-
timation. In 2003 International Symposium on Empirical Software Engineering, 2003.
ISESE 2003. Proceedings., pages 223–230, Rome, Italy, 2003. IEEE Comput. Soc.

[6] M. Rahman, T. Goncalves, and H. Sarwar. Review of Existing Datasets Used for Soft-
ware Effort Estimation. IJACSA, 14(7), 2023.

[7] M. Rahman, H. Sarwar, M. A. Kader, T. Gonçalves, and T. T. Tin. Review and Empirical
Analysis of Machine Learning-Based Software Effort Estimation. IEEE Access, 12:85661–
85680, 2024.

[8] N. A. Zakaria, A. R. Ismail, A. Y. Ali, N. H. M. Khalid, and N. Z. Abidin. Software Project
Estimation with Machine Learning. IJACSA, 12(6), 2021.

23

