
LLM-based mapping of
natural language statements
to knowledge graph updates

Project Report in Formal Languages and Compilers

MATTIA TRITTO
ROSSELLA TRITTO

DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING
POLYTECHNIC OF BARI
Master’s Degree Course in Computer Science Engineering (AI & Data Science)

Contents

1 Introduction 2

2 Code Architecture Overview 3
2.1 Utils . 3
2.2 Knowledge Graph . 4

3 New Features 5
3.1 Update Individuals . 5
3.2 Add Individuals . 6

3.2.1 add Function . 6
3.2.1.1 get_superclasses Function 7

3.3 Remove Individuals . 7
3.4 Remove Assertions . 7

4 System Evaluation 9
4.1 How the framework was evaluated . 9
4.2 Explanation of the automatic testing code 10

5 Result Analysis 12
5.1 Home Configuration . 12
5.2 Table of Test Cases . 13
5.3 Overall performances . 16

5.3.1 Group A, retrieve information about specific devices 17
5.3.2 Group B, retrieve information about a room 18
5.3.3 Group C, retrieve information about the entire house 18
5.3.4 Group D, queries for setting specific devices 18
5.3.5 Group E, queries for setting group of devices 19
5.3.6 Group F, queries for modifying the configuration 19
5.3.7 Group G, advanced queries conditioned by sensor data 20

6 Conclusions and Future Work 21

Bibliography 22

1

1
Introduction

This project aims to develop CRUD functions to interact with the knowledge graph
and use appropriate prompts to guide an open source LLM to transform specific
natural language statements into a sequence of Web Ontology Language (OWL)
knowledge graph updates. The adopted strategy is to register a custom fuction
that the agent can invoke for each functionalities. Thanks to this, we can obtain
effectively interactions between LLM and the knowledge graph (KG). To achieve
this goal, we use ollama, an open-source platform that facilitates LLM usage, and
Python for interfacing with LLM and managing knowledge graph operations. The
functionalities implemented and evaluated in this report include adding new indi-
viduals to the knowledge graph, removing individuals or property assertions, and
updating existing individuals. To do this, we have employed a zero-shot strategy so
that the code can be usable for future purposes beyond just the context of domotics.

The report is structured as follows:
1. Introduction;
2. Code Architecture Overview: provides an overview of the system’s archi-

tecture;
3. New Features: describes newly added functionalities;
4. System Evaluation: explains the approach used to evaluate system perfor-

mance;
5. Results Analysis: presents and analyzes the results of the evaluation;
6. Conclusion and Future Work.

In the next sections, we will provide a detailed view of all modifications implemented
in the code and an accurate explanation of our chosen methodology for evaluating
the agent’s performance with very promising results in the testing phase.

2

2
Code Architecture Overview

In this chapter, we outline the structure of the project’s code, highlighting the main
directories: data, test, and src.

Folder data
The data folder contains the necessary file to configure the home environment,
namely home.owl. This file is formatted in OWL (Web Ontology Language) and
represents a description of the elements in the house, their properties, divided into
object and data properties, and the relationships between different classes. The
configuration of the home used for testing is provided in 5.1.

Folder test
The test folder includes the main file home.py for executing and interacting with
the agent. It provides all the functionalities to load the home configuration, register
functions, and respond to user queries. Specifically, it defines a SmartHome class
that represents the assistant and provides an interface to interact with the knowl-
edge graph.

Folder src
The src folder contains the main source code of the project. Within this folder, there
are 10 files, among which two are particularly important for the newly implemented
functionalities:

• _kg.py: Handles the management of the Knowledge Graph. It provides func-
tionalities to create, update, query, and manipulate the agent’s knowledge
base;

• _utils.py: Contains general utility functions such as string transformation
between different formats.

The other files in the src folder contain various system components, each with
specific responsabilities. However, _kg.py and _utils.py are the files we modified
for implementing the new functionalities.

2.1 Utils
In _utils.py, we added two new methods:

• space_to_snake: Transform a string containing spaces by replacing them with
underscores;

• label_to_iri: Converts an input string into an IRI. We insert : to the

3

2. Code Architecture Overview

beginning of the string, apply the previously defined space_to_snake method,
and capitalize the first letter.
For example: ”Living room” is transformed in ” : Living_room”.

These methods manage the creation of new individuals, ensuring their names are
coherent with the ontology’s required format.

2.2 Knowledge Graph
We used several methods of _kg.py to handle the addition, removal, and update of
individuals or assertions within the ontology:

• add_axioms: Add axioms to the ontology via an asynchronous POST request.
It manages both ontology and associated index updates;

• axioms_for_entity: Retrieve axioms for a specific entity. The entity can be
represented as either a string or an Entity object. It uses an HTTP GET
request to obtain axioms, which are returned as a dictionary filtered by entity
type and IRI;

• add_individual: Add a new individual to the ontology with specified classes.
First, an Individual object is created using the provided IRI, followed by the
creation of the list of assertions to be added. These assertions are added to
the ontology using add_axioms;

• add_functional_property_assertions: This method adds multiple func-
tional properties assertions to the ontology. It first transforms the input into
a collection and then adds the assertions to the ontology using the add_axioms
method;

• remove_entity / remove_property_assertions: remove_entity removes
an entity from the ontology, while remove_property_assertions removes
property assertions from the ontology. Both perform an HTTP DELETE
request to the server. They are similar to axioms_for_entity but aim to
remove data rather than retrieve it.

4

3
New Features

In this chapter, we describe some functionalities introduced to manage operations
on the Knowledge Graph. These operations include adding new individuals, up-
dating existing ones, removing individuals, and removing specific assertions within
the graph. The adopted strategy is to implement the KG functionality as an ad-
ditional function available to the agent via llm.register_function. Using the
register function, we can register a custom function that the agent can invoke. The
description field is crucial as it describes the function’s operation. This descrip-
tion helps the agent understand the purpose of the function and when to use it.
We used a zero-shot strategy to generalize as much as possible, avoiding restricting
ourselves only to the smart home context. Thanks to this function, we can return
actions in JSON format that can be converted into operations to the KG.

3.1 Update Individuals
The update_individuals function enables transforming specific user queries into
updates to the knowledge graph.
The function parameters of the register_function and the description field are:

• subjects: A list of subjects to update;
• predicate: The predicate to update;
• object: The new object of the axiom that will be updated for the specified

subjects.
description =

"""
Updates an array of subjects within the knowledge graph.
This function allows users to
modify the graph based on specific queries .
"""

The update_individuals function allows modifying one or more individuals. The
main steps are:

1. Subject check: First, we verify that the subject exists in the KG using
axioms_for_entity to retrieve a set of axioms related to a specific entity;

2. Predicate check: Next, we check that the axiom containing the subject has
the predicate specified by the query. If the predicate is present, we add the
individual to the subjects_to_update list;

3. Manage the subject list: Creating this list allows efficient management of
subjects, so if a check fails for a particular subject, the method does not stop

5

3. New Features

but continues with the other subjects in the list;
4. Update subjects: Finally, we update all subjects that passed all checks using

add_functional_property_assertion in _kg.py.
5. Result: The returned response varies depending on the number of modified

subjects. If all subjects were successfully updated (meaning the length of the
modified subjects list is the same as the initial subjects), the function returns
a success message; otherwise, it indicates which subjects were not updated.

3.2 Add Individuals
The add_individuals function enables the addition of new individuals to the knowl-
edge graph. Regarding the register_function, the parameters for registration are:

• individual_name: The name of the new individual to be added to the KG;
• class_name: The class to which the new individual belongs.

description =
"""
Adds a new individual to the knowledge graph by specifying
the class it belongs to within the graph.
"""

The steps of the function are:
1. Transform Name into IRI: We transform both the individual name and

the class name into their corresponding IRIs using label_to_iri (2.1);
2. Check Class: We use the entity function to verify that the class exists in

the KG. The entity function retrieves an entity from the KG using an IRI or
a label;

3. Manage Classes with a Final ’s’: After some tests, we noticed that the
agent sometimes considered the class name with a final ’s’. Therefore, if the
class ends with an ’s’, we remove the ’s’ and recheck the class’s existence. If
it exists, we proceed with the addition; otherwise, we return an error.

3.2.1 add Function
The add function performs the actual addition of the individual to the KG. It in-
cludes:

1. Retrieve Superclasses: Recursively retrieves all superclasses of the specified
class using get_superclasses;

2. Assign Default Properties: Set default properties for various classes using
a predefined dictionary;

3. Add Individual:
• Add the individual to the KG, associating it with all classes obtained in

the superclasses list;
• Assigns default properties to the individual with

add_functional_property_assertions (2.2).

6

3. New Features

3.2.1.1 get_superclasses Function

The get_superclasses function in _kg.py, given a class, returns a list of strings
containing all superclasses. Specifically, as long as there are assertions for the current
class:

1. It retrieves the assertions for the current class (axioms_for_entity);
2. It retrieves the superclass from the assertion using the key "subclass_of";
3. It updates the current class name with the name of the new found superclass;
4. It adds the superclass to the class_list.

3.3 Remove Individuals
The remove_individuals function enables the removal of existing individuals from
the knowledge graph. Using register_function, the parameter for registration is:

• individual_names: A list of names of the individuals to be removed.
description =

"""
Removes an array of individuals from the knowledge graph.
Forget the name of the individual specified .
"""

In the field description we use the keyword "forget" to enables the correct man-
agement of queries such as "Forget about lamp 1".
The steps followed by the function are:

1. Check Individuals:
• For each individual in the individual_names list, we verify their exis-

tence in the KG using the entity function;
• If the individual exists, we add it to the individuals_to_remove list.

This strategy is similar to the one used in the add_individuals func-
tion, where we proceed with the removal of existing individuals without
stopping the entire process if one of the individuals does not exist;

2. Remove Individuals:
• We use the remove_entity (2.2) function to delete the entity and all

axioms connected to it;
3. Result:

• The function returns a success message if all individuals in the list have
been removed;

• If some individuals cannot be removed, the function returns the list of
individuals that have not been deleted.

3.4 Remove Assertions
The remove_assertions function allows the removal of specific axioms related to
existing individuals. The parameters for register_function are:

• Subject: The subject of the assertion to be removed;
• Predicate: The predicate of the assertion to be removed.

7

3. New Features

description =
"""
Removes an assertion from the knowledge graph.
Forget the relationship between subject and object .
"""

The function is implemented as follows:
1. Subject Check: Uses axioms_for_entity (2.2) to retrieve axioms associated

with the specified subject;
2. Predicate Check: Verifies if the axioms related to the subject contains the

specified predicate. We use kg.entity(predicate).iri to obtain the IRI
of the predicate. If the predicate is not present in the axioms, a warning is
returned indicating that the predicate does not exist for this subject;

3. Remove Assertion: If both subject and predicate are valid and present in
the KG, the function proceeds to remove the assertion using
remove_property_assertions from the KG (2.2).

4. Result: After successfully removing the assertion, the function returns a mes-
sage confirming that the operation has been completed successfully.

8

4
System Evaluation

4.1 How the framework was evaluated
To evaluate the framework performances, the plan was to test it with 100 different
queries to observe its responses and verify how well the natural language sentences
were translated into correct function calls.
Each query has been evaluated based on the following criteria:

• Function call: 1 if the function name is correct, -1 if it is not;
• Function parameters: 1 if the parameters are correct, 0 if they are correct

but some are missing, -1 if they are incorrect;
• Chat output: 1 if it is correct, 0 if it is correct but some information is

missing, -1 if it is incorrect.

The dataset containing queries was divided into these 7 groups:
• Group A) 15 queries for retrieving information about specific devices (e.g.,

"Is lamp 1 on?", "What’s the setting of air conditioner 1?", "What’s the tem-
perature in the living room?", "Is someone in the kitchen?");

• Group B) 15 queries for retrieving information about a room (e.g., "Is the
light on in the kitchen?", "List all lights in the living room");

• Group C) 15 queries for retrieving information about the entire house (e.g.,
"How many rooms are there?", "List all devices");

• Group D) 15 queries for setting specific devices (e.g., "Turn on the robot
vacuum", "Set air conditioner 1 to 20 degrees");

• Group E) 15 queries for setting groups of devices (e.g., "Turn off everything
in the bathroom", "Turn on all lights");

• Group F) 10 queries for modifying the configuration (e.g., "Move lamp 1 to
the living room", "Forget where lamp 2 is located", "Add a new room named
...");

• Group G) 15 advanced queries conditioned by sensor data (e.g., "Set air con-
ditioner 1 to 5 degrees lower than the current room temperature", "Turn off the
light in all rooms with no people").

For groups A, B, and C the LLM must always call the respond function for all
the queries. It is crucial that the LLM chat output is sensible and provides correct
information to the user.

For groups D, E, and F the LLM must call the correct functions with the correct

9

4. System Evaluation

parameters. Additionally, the LLM chat output must be coherent and accurate.

Group G is more of an experiment to evaluate the capacity of the LLM. Given the
complexity of these queries, it is challenging for a small LLM running on a PC to
fully understand intricate sentences. This group helps to explore the boundaries and
limitations of the framework.

After automatically posing these queries to the system and manually evaluating the
correctness of the function calls, parameters, and chat output, the metrics used to
evaluate the system are the following:

• Function call accuracy;
• Parameter accuracy (fully correct only, and including partially correct);
• Chat output accuracy (fully correct only, and including partially correct).

4.2 Explanation of the automatic testing code
The testing has been designed to be:

• Reproducible: each time a query is asked, the ontology is restored to its
original state, which is particularly useful when testing queries that changes
the configuration (in order to do that, we call home.configure() before a new
query is asked);

• Automatic: this is crucial because we don’t have GPUs on our personal
laptops, so each inference took about 4 minutes to produce the output. It
would be very annoying to wait every 4 minutes to execute the next query;

• Automatically stored: the results are saved automatically in a CSV file, so
they can be analyzed later.

In the test folder, we can store all the queries in a file named queries.csv. This
CSV file should contain only one column, where each query is separated by the
new line character. For running the automated test, it is necessary to run the
automated_testing.py file. All the chat outputs are stored in the CSV file named
chat_outputs.csv, which consists of two columns:

• The first column contains the queries asked;
• The second column contains all the chat outputs generated by the LLM.

To retrieve the standard output, we have redirect the standard output in this way:
with io. StringIO () as buf , redirect_stdout (buf):

• io.StringIO() creates an in-memory buffer (buf) that behaves like a file
object but stores its data in a string buffer;

• redirect_stdout(buf) redirects the standard output (stdout) to buf. This
means any output that would normally be printed to the console will be cap-
tured into buf instead.

So after calling the asynchronous function print_response(home, query), the
chat_output is retrieved using buf:
chat_output = buf. getvalue (). strip ()

10

4. System Evaluation

• buf.getvalue() retrieves the contents of the StringIO buffer buf. Since
redirect_stdout() redirected print() output to buf, buf now contains
whatever was printed by print_response();

• strip() removes any leading and trailing white space characters from the
captured output.

writer = csv. writer (outfile)
writer . writerow ([’Query ’, ’Chat output ’])
writer . writerow ([query , chat_output])

Then, we write the query and the chat output as a new row in the file chat_outputs.csv.
To automate the retrieval of function calls and their parameters, we’ve done a
workaround due to the current lack of API support. After running automated_testing.py,
we analyzed the owllama.log file using CLI tools to automatically extract the JSON
data related to the function calls.
In order to do that, it is necessary to open a terminal (valid for MacOS and Linux
users only), move to the root directory of the owllama project and run the following
command:
awk ’/=====\[Start response \]=====/ , /=====\[End response

\]=====/{ if (!/=====.*=====/) print}’
owllama .log > test/ functions_called .json

awk is a command-line utility for text processing. In this case, it matches lines
between =====[Start response]===== and =====[End response]=====
in the owllama.log file.
The command {if (!/=====.*===== /) print} filters and prints lines that do
not match =====.*=====, specifically extracting JSON function calls, and then
redirects this output to the functions_called.json file in the test directory.

11

5
Result Analysis

5.1 Home Configuration
The home configuration used for testing includes 20 devices distributed across 5
rooms: bedroom, bathroom, study, kitchen, and living room. The devices are di-
vided into two main types: togglable devices and sensors. Each device has the
object property located_in indicating its room, and the state property indicating
whether it is on or off.

Togglable Devices
Togglable devices are further divided into Lights and Appliances.

Lights
• Lights: Can be turned on or off.
• Dimmable Lights: Have an additional data property setting that indicates

the current light level.

Appliances
• Some appliances may have the property setting and unit depending on the

specific device.

Sensors
Sensors, in addition to located_in and state properties, provide information through
the reading property. The types of sensors include:

• Temperature Sensors: Provide the temperature of the room they are lo-
cated in.

• Occupancy Sensors: Indicate if there is a person in the room (Boolean
property).

• Smoke Sensors: Indicate the presence or not of smoke (Boolean property).
• Humidity Sensors: Provide the humidity percentage of the room.

12

5. Result Analysis

Figure 5.1: List of Togglable Devices with their properties.

Figure 5.2: List of Sensors with their properties.

5.2 Table of Test Cases
The following table provides a complete overview of the system’s performance. For
further details, please refer to the attached test.pdf which contains comprehensive
information about the testing, including our comments on each executed query.

13

5. Result Analysis

Table 5.1: Accuracy Table

Legend:
1 = Totally correct,
0 = Partially correct
-1 = Incorrect

ID Invoked Function Correct Arguments Correct Chat Output Correct
A1 1 1 1
A2 1 1 1
A3 1 1 1
A4 1 1 1
A5 1 1 1
A6 1 1 1
A7 1 1 1
A8 1 1 1
A9 1 1 1
A10 1 1 1
A11 1 1 1
A12 1 1 1
A13 1 1 1
A14 1 1 1
A15 1 1 1
B16 1 1 1
B17 1 1 -1
B18 1 1 1
B19 1 1 1
B20 1 1 -1
B21 1 1 -1
B22 1 1 -1
B23 1 1 -1
B24 1 1 -1
B25 1 1 1
B26 1 1 -1
B27 1 1 -1
B28 1 1 -1
B29 1 1 -1
B30 1 1 -1
C31 1 1 1
C32 1 1 1
C33 1 1 1
C34 1 1 -1
C35 1 1 1
C36 1 1 1
C37 1 1 1

14

5. Result Analysis

ID Invoked Function Correct Arguments Correct Chat Output Correct
C38 1 1 1
C39 1 1 0
C40 1 1 1
C41 1 1 1
C42 1 1 1
C43 1 1 1
C44 1 1 -1
C45 1 1 -1
D46 1 1 1
D47 1 1 1
D48 1 1 1
D49 1 1 1
D50 1 1 1
D51 1 1 1
D52 -1 -1 -1
D53 1 1 1
D54 1 1 1
D55 1 1 1
D56 1 1 1
D57 1 1 1
D58 1 1 1
D59 1 1 1
D60 1 1 1
E61 -1 -1 1
E62 1 1 1
E63 -1 -1 1
E64 -1 -1 1
E65 1 1 1
E66 1 1 1
E67 1 1 1
E68 -1 -1 -1
E69 1 1 1
E70 1 0 1
E71 1 1 1
E72 1 1 1
E73 1 1 1
E74 1 1 1
E75 1 1 1
F76 -1 -1 1
F77 1 1 1
F78 1 1 1
F79 1 1 1
F80 1 1 1
F81 1 1 1
F82 1 1 1

15

5. Result Analysis

ID Invoked Function Correct Arguments Correct Chat Output Correct
F83 1 1 1
F84 1 -1 1
F85 1 1 1
G86 -1 -1 1
G87 -1 -1 -1
G88 1 -1 -1
G89 -1 -1 1
G90 -1 -1 1
G91 -1 -1 1
G92 1 -1 -1
G93 -1 -1 1
G94 1 -1 -1
G95 -1 -1 1
G96 1 1 1
G97 -1 -1 -1
G98 -1 -1 -1
G99 -1 -1 -1
G100 -1 -1 1

5.3 Overall performances
If we exclude group G from the queries (which was more of an experiment), the
results are really promising:

Fully correct (%) Considering also partially correct (%)
Function call accuracy 92,9 92,9
Parameters accuracy 90,6 91,8
Chat output accuracy 80,0 81,2

Table 5.2: Overall performances without group G

It must be said that the results are really good, considering that this is an open-
source LLM model with relatively few billion parameters, and all the function de-
scriptions were very generic. We didn’t even use few-shot strategies, which would
certainly have further improved performance (but with a slight trade-off on inference
speed and loss of generalization).
Anyway, these are the results if we consider also group G:

Fully correct (%) Considering also partially correct (%)
Function call accuracy 83,0 83,0
Parameters accuracy 78,0 79,0
Chat output accuracy 76,0 77,0

Table 5.3: Overall performances including group G

16

5. Result Analysis

Figure 5.3: Accuracy metrics without group G

Figure 5.4: Accuracy metrics including group G

In the next subsections, it will be analyzed separately by each group, and also
groups A, B and C together (retrieval queries) and D, E, and F together (setting
and modifying queries).

5.3.1 Group A, retrieve information about specific devices

Fully correct (%) Considering also partially correct (%)
Function call accuracy 100,0 100,0
Parameters accuracy 100,0 100,0
Chat output accuracy 100,0 100,0

Table 5.4: Group A performances

In these queries, the most important accuracy to consider is the chat output accu-
racy.

17

5. Result Analysis

This is a brilliant result, if you ask for information about a single device, it will reply
with correct information, also if you ask for information about something that does
not exist (like A3).
If we want to be very critical, in 4 cases it responded with correct information but
included sentences that were superfluous to the question asked (A9, A12 and A14).

5.3.2 Group B, retrieve information about a room

Fully correct (%) Considering also partially correct (%)
Function call accuracy 100,0 100,0
Parameters accuracy 100,0 100,0
Chat output accuracy 26,7 26,7

Table 5.5: Group B performances

About this specific set of queries, the chat output accuracy is bad. The results here
are justified because we’ve posed many queries that ask information about a device
in a room that exists in the configuration but not in that specific room (B20, B22,
B23 and B29).
Furthermore, when you ask queries like: List all <category of device> in the <spe-
cific room> tends to hallucinate about which devices are actually in that room (B17,
B23, B24, B27, B29 and B30).

5.3.3 Group C, retrieve information about the entire house

Fully correct (%) Considering also partially correct (%)
Function call accuracy 100,0 100,0
Parameters accuracy 100,0 100,0
Chat output accuracy 73,3 80,0

Table 5.6: Group C performances

The results here are acceptable. Nothing particular has emerged here, the errors
are all about hallucination that the LLM had when it has to list all devices, or all
devices that have a particular setting (C34, C39, C44 and C45).

5.3.4 Group D, queries for setting specific devices
Here of course it is fundamental that the LLM has called the correct function with
the correct parameters. The results are pretty good, considering that the 93,3%
it calls correctly the function (and so, it performs what it is supposed to do). In
this particular case, just one time it has called the respond function instead of the
update_individuals (D52).

18

5. Result Analysis

Fully correct (%) Considering also partially correct (%)
Function call accuracy 93,3 93,3
Parameters accuracy 93,3 93,3
Chat output accuracy 93,3 93,3

Table 5.7: Group D performances

5.3.5 Group E, queries for setting group of devices

Fully correct (%) Considering also partially correct (%)
Function call accuracy 73,3 73,3
Parameters accuracy 66,7 73,4
Chat output accuracy 93,3 93,3

Table 5.8: Group E performances

Here results tend to be lower than the previous case, because many times it has
called the respond function instead of the update_individuals (E61, E63, E64
and E68).
Chat output accuracy is bigger than the parameters accuracy, this means that as a
user that is using the system, for him the system is a black box. For him the 93,3%
has done what it is supposed to do, but in reality it hasn’t (because only the 73,4%
of the cases it has really done what it was asked to do).

5.3.6 Group F, queries for modifying the configuration

Fully correct (%) Considering also partially correct (%)
Function call accuracy 90,0 90,0
Parameters accuracy 80,0 80,0
Chat output accuracy 100,0 100,0

Table 5.9: Group F performances

Results are pretty good. Just one time it has called the wrong function (F76), and
just one time it has instantiated the wrong arguments (F84).
The chat output accuracy is bigger than the parameters accuracy for the same
reasons as before.

19

5. Result Analysis

5.3.7 Group G, advanced queries conditioned by sensor data

Fully correct (%) Considering also partially correct (%)
Function call accuracy 26,7 26,7
Parameters accuracy 6,7 6,7
Chat output accuracy 53,3 53,3

Table 5.10: Group G performances

Results are pretty bad. For now, the system is not able to handle this type of
advanced queries. The reason could be the lack of capacity of the LLM used, it is
too small to understand this type of queries. Just four times it has called the right
function, and of these 4 just one time it has called also the right arguments.

20

6
Conclusions and Future Work

The system does what is supposed to do 90.6% of the time. This is a very astonishing
result.
This is the future of our smart homes. The results are promising, showing that the
use of offline LLMs is good for these tasks. Offline models ensure better privacy, as
data isn’t sent to external servers, and they significantly reduce costs. By handling
these tasks locally, smart homes can operate more securely and cost-efficiently. The
combination of high performance and cost-effectiveness is a game-changer for the
smart home industry.
As mentioned earlier in this report, it could be beneficial to include examples of
function usage (using a few-shot prompting strategy) to further improve accuracy.
However, this should be approached cautiously due to potential loss of generality
and increased time required to produce results.
Furthermore, handling queries like those in the G group will be quite challenging.
Potential solutions could involve developing specific functions aiming to address
these advanced queries, or leveraging more powerful open source LLMs if they be-
come available in the future. It will be intriguing to observe the performance in the
future when tasked with such complex queries.

21

Bibliography

[1] OWL 2 Web Ontology Language Primer (Second Edition). (n.d.).
https://www.w3.org/TR/owl2-primer/

[2] Prompt Engineering Guide – Nextra. (n.d.). https://www.promptingguide.ai/

22

	Introduction
	Code Architecture Overview
	Utils
	Knowledge Graph

	New Features
	Update Individuals
	Add Individuals
	 add Function
	 get_superclasses Function

	Remove Individuals
	Remove Assertions

	System Evaluation
	How the framework was evaluated
	Explanation of the automatic testing code

	Result Analysis
	Home Configuration
	Table of Test Cases
	Overall performances
	Group A, retrieve information about specific devices
	Group B, retrieve information about a room
	Group C, retrieve information about the entire house
	Group D, queries for setting specific devices
	Group E, queries for setting group of devices
	Group F, queries for modifying the configuration
	Group G, advanced queries conditioned by sensor data

	Conclusions and Future Work
	Bibliography

