

Politecnico di Bari

Department of Electrical and Information Engineering

Bachelor Degree in Computer and Automation Engineering

————————————————————————————

Dissertation in Digital Control

Calibration and trajectory estimation of a
stereo camera using OpenCV and

ORB-SLAM3

Supervisor:

Prof. Paolo Lino

Co-supervisor:

Nikolai Svishchev

Candidate

Mattia Tritto

————————————————————————————

Academic Year 2022 - 2023

Index

Chapter 1 - Introduction	
6

1.1 - An overview of autonomous underwater vehicles	
...6

1.2 - Use cases of stereocameras underwater	
..7

1.3 - What is the purpose of camera calibration	
..8

1.4 - Monocular cameras	
..9

1.5 - Binocular cameras	
..10

1.6 - The mathematical model of thin lenses	
..12

1.7 - Types of distortion introduced by real lenses	
...13

Chapter 2 - Monocular calibration using a linear camera model	

16

2.1 - Overview of the calibration process	
..16

2.2 - The 2D and 3D coordinate systems and the relationship between these three
coordinate systems	
..16

2.3 - The scale propriety of p and how do we choose the scale	
.................................19

2.4 - Decomposing the projection matrix P	
..21

2.5 - From camera coordinates to image coordinates: perspective projection	
...........22

2.6 - From world coordinates to camera coordinates	
..25

2.7 - From world coordinates to image coordinates: combining the intrinsic and
extrinsic matrix	
..26

2.8 - Correction of radial and tangential distortion	
..27

Chapter 3 - Stereo reconstruction with calibrated cameras	
28

3.1 - Why we use stereo cameras	
..28

3.2 - Backward projection: from 2D to 3D	
...28

3.3 - Stereo matching: finding disparities	
...31

Chapter 4 - Stereo reconstruction with uncalibrated cameras	
35

4.1 - Overview of the uncalibrated stereo case	
...35

4.2 - Epipolar geometry	
..36

2 Mattia Tritto

4.3 - Estimating the fundamental matrix F	
..41

4.4 - Finding correspondences	
..43

Chapter 5 - ORB-SLAM3	
46

5.1 - What is ORB-SLAM3	
..46

5.2 - Stereo camera calibration using OpenCV	
...47

5.3 - ORB-SLAM3 installation using Docker	
..52

5.4 - Trajectory estimation using Python	
...55

Conclusions	
58

Bibliography	 59

3 Mattia Tritto

Index of figures

1 - An example of AUV…………………………………………………………………………6

2 - Stereocamera guided by a professional driver…………………………….…………7

3 - An example of a monocular camera that can be attached on a Raspberry

PI (OV9821-160)………….………………………………………………………………………9

4 - An example of a stereo camera (Intel RealSense D455)…………………….…10

5 - Representation of the thin lenses model………………………………………….…11

6 - Example of the barrel distortion…………………………………….…..………….…13

7 - Example of the pincushion distortion…………………………………….…….……14

8 - Example of the tangential distortion………………………………….….…….……15

9 - Example of scaling the projection matrix P……….……………….….…….……19

10 - Representation of the image plane and the image sensor……….……..……23

11 - Representation of the ray where the 3D point lies……………………………..28

12 - Example of triangulation using a pair of identical cameras…………………29

13 - A disparity map of a particular scene………………………………………………31

14 - Representation of the template window in the left camera and the search

line in the right camera…………………………………………………………..……………32

15 - Differences between small and large windows sizes…………………………….33

16 - Representation of the epipoles and the epipolar plane……………………….36

17 - Representation of the epipolar plane……………………………………………….37

18 - Example of SIFT algorithm applied on these two photos of Arc de

Triomphe……………………………………………………………………………………..…….41

19 - Representation of epipolar lines………………………………..…………………….43

20 - Given a point in the left image, the correspondent point in the right

image must lie on the epipolar line………………………………..…………..………….45

21 - Map viewer of ORB-SLAM3………………………………..……………..………….46

4 Mattia Tritto

22 - OpenCV recognizes and highlights the chessboard corners on the original

image………………..……………..……………………………………………………….……….48

23 - Original image VS rectified image. Radial and tangential distortion is no

longer visible to the naked eye………………………………………………………………52

24 - Example of the output followed by the previous command…………………54

25 - Trajectory estimation of the EuRoC stereo dataset on the XY plane..…55 

5 Mattia Tritto

Chapter 1 - Introduction

1.1 - An overview of autonomous underwater
vehicles

Autonomous underwater vehicles (AUVs) are an essential tool for exploring
the vast and complex ocean environment. These vehicles can perform various
tasks, such as oceanographic surveys, environmental monitoring, and search
and rescue operations. However, the success of these tasks depends on the
vehicle's ability to navigate autonomously and accurately in the underwater
environment.

Unlike land-based robots, AUVs face significant challenges in underwater
navigation, such as limited communication capabilities, harsh environmental
conditions, and the complexity of the underwater environment. The
development of advanced navigation techniques for AUVs is crucial to
overcome these challenges and enable efficient and safe operations.

Simultaneous localization and mapping (SLAM) is a popular navigation
technique that uses onboard sensors to create a map of the vehicle's
surroundings and estimate its position relative to the map. However, the
accuracy of SLAM is affected by various factors, such as sensor noise,

6 Mattia Tritto

Figure 1: An example of AUV, credits: https://www.blueoceanmts.com/news/
blog-post-three-tak7s

https://www.blueoceanmts.com/news/blog-post-three-tak7s
https://www.blueoceanmts.com/news/blog-post-three-tak7s

environmental conditions, and the presence of obstacles. Thus, there is a need
to develop robust SLAM algorithms that can handle these challenges.

Path planning is another essential component of underwater autonomous
navigation. AUVs need to plan their paths to optimize their mission
objectives while avoiding obstacles and minimizing energy consumption.

This thesis focuses on the calibration process of stereo cameras for underwater
autonomous navigation, and it consists of the following chapters:

• chapter 1 provides a brief introduction to Autonomous Underwater Vehicles
(AUVs) and highlights the significance of stereo cameras in maritime
environments. Emphasis is placed on the importance of camera calibration
in the context of underwater autonomous navigation;

• chapter 2 explains the process of performing a simple monocular
calibration. This serves as a fundamental step in understanding stereo
calibration;

• chapter 3 explores the reconstruction of a 3D scene using two identical
cameras that have already been calibrated. This chapter outlines the
methodology and steps involved in achieving accurate 3D reconstruction;

• chapter 4 focuses on reconstructing a 3D scene using two identical cameras
that are not calibrated. The objective is to calibrate these cameras and
follow the steps described in Chapter 3 for accurate reconstruction;

• chapter 5 focuses on explaining the code for stereo reconstruction, the
installation of a docker-version of ORB-SLAM3 and how to perform a
trajectory estimation using Python.

The research will continue on improving the accuracy and reliability of the
stereo calibration in the underwater environment and evaluating their
performance through simulations and field experiments.

1.2 - Use cases of stereocameras underwater

Highly constrained patterns of stereo photographs can be used to
automatically generate a detailed 3D model of a site, shipwreck or artefacts.
Based on citations in the literature, underwater camera systems are now

7 Mattia Tritto

widely employed in preference to manual methods as a non-contact, non-
invasive technique to capture accurate length information and thereby
estimate biomass or population fish distributions.

There are many other applications of underwater photogrammetry. Stereo

camera systems were used to conduct the first accurate seabed mapping
applications and have been used to measure the growth of coral. Single and
stereo cameras have been used for monitoring of submarine structures, most
notably to support energy exploration and extraction in the North Sea, 3D
models of sea grass meadows and inshore sea floor mapping.

1.3 - What is the purpose of camera calibration

Calibration of any camera system is essential to achieve accurate and reliable
measurements. Small errors in the perspective projection must be modelled
and eliminated to prevent the introduction of systematic errors in the
measurements. In the underwater environment, the calibration of the cameras
is of even greater importance because the effects of refraction through the
air, housing and water interfaces must be incorporated.

The common factor for all these applications of underwater use cases is a
specified level of accuracy. Photogrammetric surveys for heritage recording,
marine biomass or fish population distributions are directly dependent on the
accuracy of the 3D measurements. Any inaccuracy will lead to significant

8 Mattia Tritto

Figure 2: Stereocamera guided by a professional
diver, credits: https://
www.livingoceansfoundation.org/profile/jfreund/

https://www.livingoceansfoundation.org/profile/jfreund/
https://www.livingoceansfoundation.org/profile/jfreund/

errors in the measured dimensions of artefacts, under or over estimation of
biomass or a systematic bias in the fish population distribution.

1.4 - Monocular cameras

Monocular cameras, also known as single-lens cameras, are cameras that use a
single lens to capture images or videos. Unlike stereo cameras, which use two
lenses to create a three-dimensional image, monocular cameras capture a 2D
image that represents a flat projection of the scene.

Monocular cameras are commonly used in smartphones, digital cameras, and
other consumer electronics. They are also used in robotics, autonomous
vehicles, and other applications that require visual sensing.

One of the advantages of monocular cameras is their simplicity and cost-
effectiveness. They require fewer components than stereo cameras and can be
manufactured at a lower cost. Monocular cameras also have a smaller form
factor, making them ideal for applications where space is limited.

However, one of the limitations of monocular cameras is their inability to
capture depth information directly. Without depth information, it can be
difficult to accurately estimate the distance between objects in the scene. This
can limit their use in applications that require precise distance measurement,
such as 3D modelling, augmented reality, and autonomous navigation.

To overcome this limitation, monocular cameras can be paired with other
sensors, such as LiDAR or depth sensors, to capture depth information.

9 Mattia Tritto

1.5 - Binocular cameras

Binocular cameras, also known as stereo cameras or depth cameras, use two
or more cameras to capture stereo images that can be used to create a 3D
representation of the scene. The cameras are typically positioned a short
distance apart, mimicking the way that our eyes capture images from slightly
different viewpoints.

The two cameras capture images simultaneously, and the resulting stereo
image pair can be used to calculate the depth information of the scene. The
depth information is calculated by analysing the differences between the two
images, such as disparities in position or texture. The greater the difference
between the two images, the closer the object is to the cameras.

Stereo cameras have a wide range of applications, from computer vision and
robotics to entertainment and virtual reality. They are commonly used in 3D
scanning and modelling, object recognition, tracking, and autonomous
navigation.

One of the advantages of stereo cameras is their ability to capture depth
information using computer vision techniques. This makes them highly
accurate and reliable in applications that require precise depth measurement.

10 Mattia Tritto

Figure 3: an example of a monocular
camera that can be attached on a
Raspberry PI (OV9281-160), credits:
https://it.aliexpress.com/item/
1005003962468246.html

https://it.aliexpress.com/item/1005003962468246.html
https://it.aliexpress.com/item/1005003962468246.html

However, stereo cameras can be more complex and expensive than monocular
cameras, as they require multiple lenses and sensors. They can also be more
difficult to calibrate, as the cameras must be precisely aligned and
synchronised to ensure accurate depth calculation. 

11 Mattia Tritto

Figure 4: an example of a stereo camera (Intel RealSense D455),
credits: https://www.amazon.it/Intel-Fotocamera-RealSense-
profondit%C3%A0-D455/dp/B08HHHDRNM

https://www.amazon.it/Intel-Fotocamera-RealSense-profondit%C3%A0-D455/dp/B08HHHDRNM
https://www.amazon.it/Intel-Fotocamera-RealSense-profondit%C3%A0-D455/dp/B08HHHDRNM
https://www.amazon.it/Intel-Fotocamera-RealSense-profondit%C3%A0-D455/dp/B08HHHDRNM

1.6 - The mathematical model of thin lenses

The model of thin lenses is a simplified mathematical representation of how
lenses work. It is based on the assumption that lenses are thin and can be
modelled as a single curved surface with a constant thickness. The model is
widely used in optics and is essential for understanding how light is refracted
through lenses and how images are formed.

According to the model, a thin lens can be represented by a single curved
surface with a focal point and a focal length. The focal point is the point on
the optical axis where parallel rays of light converge after passing through the
lens. The focal length is the distance between the center of the lens and the
focal point.

The model also includes the lens equation, which relates the distance of an
object from the lens, the distance of the image from the lens, and the focal
length of the lens. The lens equation can be expressed as:

where is the focal length, is the object distance, and is the image
distance. This equation is used to calculate the position and size of the image
formed by a lens.

1
f

=
1
p

+
1
q

f p q

12 Mattia TrittoFigure 5: representation of the thin lenses model

The model of thin lenses is useful for understanding the basic principles of
optics and for designing and analysing optical systems. It is also used in the
design of eyeglasses, cameras, telescopes, and other optical instruments.

However, it is important to note that the thin lens model is a simplified
representation of how lenses work and does not account for all the factors that
can affect the behaviour of light, such as lens aberrations and the dispersion
of light. These factors must be taken into account in more complex optical
systems and designs.

1.7 - Types of distortion introduced by real lenses

Barrel and pincushion distortion are two types of radial distortion that can
occur in photography. Each type of distortion affects the image differently and
can be caused by different factors.

Barrel distortion is a type of radial distortion where straight lines near the
edges of an image appear to bend outwards, creating a barrel shape. This
type of distortion is commonly seen in wide-angle lenses, where the angle of
view is wider than that of the human eye. It can also occur in images that
have been digitally processed or scanned. Barrel distortion can be corrected
using specialized software or by adjusting the lens settings.

13 Mattia Tritto

Figure 6: example of the barrel
distortion, credits: https://
learnopencv.com/understanding-
lens-distortion/

https://learnopencv.com/understanding-lens-distortion/
https://learnopencv.com/understanding-lens-distortion/
https://learnopencv.com/understanding-lens-distortion/

Pincushion distortion, on the other hand, is the opposite of barrel distortion.
It causes straight lines near the edges of an image to bend inwards, creating a
pincushion shape. This type of distortion is often seen in telephoto lenses,
where the angle of view is narrower than that of the human eye. Pincushion
distortion can also be corrected using specialized software or by adjusting the
lens settings.

Tangential distortion is a type of lens distortion that causes straight lines near
the edges of an image to appear curved. Unlike barrel distortion and
pincushion distortion, which cause the entire image to bend outward or
inward, tangential distortion creates a wavy pattern near the edges of the
image.

14 Mattia Tritto

Figure 7: example of the pincushion
distortion, credits: https://
learnopencv.com/understanding-lens-
distortion/

https://learnopencv.com/understanding-lens-distortion/
https://learnopencv.com/understanding-lens-distortion/
https://learnopencv.com/understanding-lens-distortion/

Tangential distortion occurs when the lens elements are not perfectly aligned
with the image sensor or film plane. This can cause some areas of the image
to be in sharper focus than others, resulting in distortion. The distortion is
more pronounced in wide-angle lenses, which have a wider field of view and
therefore capture more of the scene. 

15 Mattia Tritto

Figure 8: example of tangential distortion, credits: https://
learnopencv.com/understanding-lens-distortion/

https://learnopencv.com/understanding-lens-distortion/
https://learnopencv.com/understanding-lens-distortion/

Chapter 2 - Monocular calibration
using a linear camera model

2.1 - Overview of the calibration process

Suppose we have a 2D image. The main goal of camera calibration is to
correctly project the 2D image points into the 3D world points. To do this we
need:

1) position and orientation of the camera compared to the 3D world
coordinates system (these are called external parameters of the
camera);

2) parameters that belong to the camera used to take the photo, such as the
focal length (these are called internal parameters of the camera).

Calibrating a camera means finding the internal and external parameters.
Before trying to estimate internal and external parameters, we need a camera
model. In our case, we use a simple linear camera model that is
computationally simple to compute. The model is a single matrix called the
projection matrix .

2.2 - The 2D and 3D coordinate systems and the
relationship between these three coordinate
systems

Before going into the details of calibration, we first need to define three
coordinate systems.

The first one is the world coordinate system (or 3D coordinate system).
Every point in the 3D world is measured based on where we placed the origin
of .

P

𝕎

16 Mattia Tritto

The second one is the camera coordinate system (3D coordinate
system). The axis of the camera coordinate frame is aligned with the optical
axis of the camera. The origin of is where our camera lies.

The third one is the image coordinate system (2D coordinate system).

Every point in the 3D-world is represented in the vector:

In the 2D-image coordinate system, the same point is described in the
vector:

If we know the relative position and orientation of the camera coordinate
frame with respect to the world coordinate frame then we can write an
expression that takes all the way from the point P in to its projection
on the image plane.

For each corresponding point in scene and image, we have this
correspondence:

ℂ
Z

ℂ

xW

xw =
xw
yw
zw

u

u = [u
v]

𝕎 (u, v)

i

u(i)

y(i)

1
≡

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

x (i)
w

y(i)
w

z (i)
w

1

17 Mattia Tritto

The known terms are the first vector and the last vector. We don’t know the
projection matrix .

If we expand the matrix as linear equations we obtain:

If we re-arrange the terms in order to have a matrix with known elements
and a vector with unknown elements we obtain:

	

In a compact form:

Where is the projection matrix written as a vector.

P

u(i) =
p11x (i)

w + p12y(i)
w + p13z (i)

w + p14

p31x (i)
w + p32y(i)

w + p33z (i)
w + p34

v(i) =
p21x (i)

w + p22y(i)
w + p23z (i)

w + p24

p31x (i)
w + p32y(i)

w + p33z (i)
w + p34

A
p

x (1)
w y(1)

w z (1)
w 1 0 0 0 0 −u1x (1)

w −u1y(1)
w −u1z (1)

w −u1

0 0 0 0 x (1)
w y(1)

w z (1)
w 1 −v1x (1)

w −v1y(1)
w −v1z (1)

w −v1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

x (i)
w y(i)

w z (i)
w 1 0 0 0 0 −uix (i)

w −uiy(i)
w −uiz (i)

w −ui

0 0 0 0 x (i)
w y(i)

w z (i)
w 1 −vix (i)

w −viy(i)
w −viz (i)

w −vi
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

x (n)
w y(n)

w z (n)
w 1 0 0 0 0 −unx (n)

w −uny(n)
w −unz (n)

w −un

0 0 0 0 x (n)
w y(n)

w z (n)
w 1 −vnx (n)

w −vny(n)
w −vnz (n)

w −vn

p11
p12
p13
p14
p21
p22
p23
p24
p31
p32
p33
p34

=

0
0
0
0
0
0
0
0
0
0
0

Ap = 0

p P

18 Mattia Tritto

2.3 - The scale propriety of p and how do we
choose the scale

An important propriety of is the scale propriety. This means that the
projection matrix acts on homogeneous coordinates:

Where k is a constant, . Therefore, projection matrices and
produce the same homogenous pixel coordinates . The projection matrix
 is defined only up to a scale.

In other words, scaling the projection matrix implies simultaneously scaling
the world and the camera, which does not change the image.

p

[
ũ
ṽ
w̃] ≡ k [

ũ
ṽ
w̃]

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

xw
yw
zw

1

≡ k
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

xw
yw
zw

1

k ≠ 0 ∈ ℝ P kP
(u, v)

P

19 Mattia Tritto

Figure 9: Example of scaling the projection matrix P

But how we choose the scale of ? We have two options:

1) set the scale so that one of the 12 elements of the projection matrix is
equal to one ();

2) set the scale so that .

In this case, we’re choosing the second option.

We want as close to as possible, and . In mathematical terms:

 such that

Can be rewritten as:

 such that

This kind of problem is called the constraint least squares problem.

We can define a loss function as follows:

The goal is to minimize this function. We calculate the derivatives of
with respect to and we place equal to 0:

This is equivalent to resolve this eigenvalue problem:

In other words, the that we’re looking for is the smallest eigenvalue of the
matrix that minimize the loss function . Once we have , we re-
arrange the elements of to form the projection matrix P.

P

P
pij = 1

∥p∥2 = 1

Ap 0 ∥p∥2 = 1

min
p

∥Ap∥2 ∥p∥2 = 1

min
p

(pT AT Ap) pTp = 1

L(p, λ)

L(p, λ) = pT AT Ap − λ(pTp − 1)

L(p, λ)
p

2AT Ap − 2λp = 0

AT Ap = λp

p λ
AT A L(p) p

p

20 Mattia Tritto

2.4 - Decomposing the projection matrix P

From the projection matrix , we can decompose it into the intrinsic matrix
 and the extrinsic matrix (to isolate the intrinsic and extrinsic

parameters):

Let’s consider this sub-matrix :

The goal is to find to matrices and so that:

 is the calibration matrix, which contains all the intrinsic parameters, and
is the rotation matrix. Given that is an upper-right triangular matrix and
is an orthonormal matrix, it is possible to uniquely decouple and using
QR decomposition:

	 	

To find the translation vector , let’s extract the fourth column of the
projection matrix . This is equal to:

P
Mint Mext

P =
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

=
fx 0 ox 0
0 fy oy 0
0 0 1 0

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

3x3 P̃

P̃ =
p11 p12 p13
p21 p22 p23
p31 p32 p33

K R

P̃ = KR

K R
K R

K R

P̃ =
p11 p12 p13
p21 p22 p23
p31 p32 p33

=
fx 0 ox

0 fy oy

0 0 1

r11 r12 r13
r21 r22 r23
r31 r32 r33

= KR

t
P

21 Mattia Tritto

If we isolate :

2.5 - From camera coordinates to image
coordinates: perspective projection

	 	 	

Let’s assume for now that we know a point in the camera coordinate frame.
The focal length (the distance between the central projection and the image
plane of the camera) is . Based on simple optical equations, we know that the
point in the image coordinate frame is defined as:

Let’s take a closer look at the image plane. In our case, the image plane is a
sensor which is used to capture the image. The image sensor has pixels. We
introduce pixel coordinates in the image sensor plane. The goal is to
figure out how we can transform the image coordinates in millimetres to
pixels. If and are pixel densities in and directions, then pixel
coordinates are:

p14
p24
p34

=
fx 0 ox

0 fy oy

0 0 1

tx
ty
tz

= Kt

t

t = K−1
p14
p24
p34

f
xi

xi =
xc

zc
f

yi =
yc

zc
f

(u, v)

mx my x y
(u, v)

22 Mattia Tritto

The top-left corner of the image sensor is its origin. If the pixel is the
principle point (where the optical axis pierces the sensor), then:

Of course , and are unknown and they’re part of the calibration
process. We combine these together in and (focal lengths in pixels in the
and directions):

 are the intrinsic parameters of the camera. They represent
the camera’s internal geometry. The equations that we have found are non-
linear equations. We use homogenous coordinates to extract linear equations.

u = mxxi = mx f
xc

zc

v = myyi = my f
yc

zc

(ox, oy)

u = mxxi = mx f
xc

zc
+ ox

v = myyi = my f
yc

zc
+ oy

mx my f
fx fy x

y

u = mxxi = fx
xc

zc
+ ox

v = myyi = fy
yc

zc
+ oy

(fx, fy, ox, oy)

23 Mattia Tritto

Figure 10: Representation of the image plane and the image sensor

We can express in homogeneous coordinates:

If we rearrange this equations by using the intrinsic matrix and a vector
containing the homogeneous coordinates of the 3D point in the camera
coordinate frame:

In a more compact form:

(u, v)

[
u
v
1] ≡ [

ũ
ṽ
w̃] ≡

zcu
zcv
zc

=
fxxc + zcox

fyyc + zcoy
zc

[
ũ
ṽ
w̃] =

fx 0 ox 0
0 fy oy 0
0 0 1 0

xc
yc
zc

1

ũ = Mintx̃c = [K |0]x̃c

24 Mattia Tritto

2.6 - From world coordinates to camera
coordinates

Now we want to go from the world coordinates frame to the camera
coordinates frame by using the position and orientation of the camera
coordinate frame.

This can be done by using the position and orientation of the camera in
the world coordinate frame . and are the camera’s extrinsic
parameters.

Given the extrinsic parameters (,) of the camera, the camera-centric
location of the point in the world coordinate frame is:

Where the translation vector , is defined as follows:

	 	 	 	 	 	

If we expand this equation:

Rearranging this equation using homogeneous coordinates results in:

cw R
𝕎 cw R

R cw

xc = R(xw − cw) = Rxw + t

t

t = − Rcw

xc =
xc
yc
zc

=
r11 r12 r13
r21 r22 r23
r31 r32 r33

xw
yw
zw

+
tx
ty
tz

25 Mattia Tritto

In a more compact form:

2.7 - From world coordinates to image
coordinates: combining the intrinsic and extrinsic
matrix

If we combine the two equations that we have found previously:

We obtain a single equation, that transforms the world coordinates in image
coordinates using the projection matrix :

x̃c =

xc
yc
zc

1

=

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

xw
yw
zw

1

x̃c = Mextx̃w

{x̃c = Mextx̃w

ũ = Mintx̃c

P

ũ = MintMextx̃w = P x̃w

26 Mattia Tritto

2.8 - Correction of radial and tangential
distortion

After having estimated the intrinsic and extrinsic parameters of the camera,
now we need to correct the radial and tangential distortion.

As we said in 1.5 paragraph, radial distortion causes straight lines to appear
curved. Radial distortion becomes larger the farther points are from the
center of the image. This type of distortion can be represented as follows:

Similarly, tangential distortion occurs because the image-taking lens is not
aligned perfectly parallel to the imaging plane. So, some areas in the image
may look nearer than expected. The amount of tangential distortion can be
represented as below:

In short, we need to find five parameters, known as distortion coefficients
given by:

{
xdistorted = x + [2p1x y + p2(r2 + 2x2)]
ydistorted = y + [p1(r2 + 2y2) + 2p2x y]

(k1, k2, k3, p1, p2)

27 Mattia Tritto

{
xdistorted = x(1 + k1r2 + k2r4 + k3r6)
ydistorted = y(1 + k1r2 + k2r4 + k3r6)

Chapter 3 - Stereo reconstruction
with calibrated cameras

3.1 - Why we use stereo cameras

Given a calibrated camera, we cannot find the 3D scene point from a single
2D image. A stereo system (a system of two cameras previously calibrated,
displaced by a distance) is a simple method for recovering the three
dimensional structure of a scene from two images.

3.2 - Backward projection: from 2D to 3D

As we said earlier, given a calibrated camera, we cannot find the 3D scene
point from a single 2D image. But we know that the corresponding 3D point
must lie on an outgoing ray:

b

28 Mattia Tritto

Figure 11: Representation of the ray where the 3D point
lies

If we calibrate the camera with the steps provided in the first chapter, we’re
able to write the equation of this ray. The perspective equations are the
following:

The same equations can be used to figure out what the equation of the
outgoing ray is, given a point in the image:

To reconstruct exactly where the point lies, we use another camera and we
triangulate the position.

u = fx
xc

zc
+ ox

v = fy
yc

zc
+ oy

(u, v)

x = z
fx

(u − ox)

y = z
fy

(v − oy)

29 Mattia Tritto

Figure 12: Example of triangulation using a pair of identical cameras

The left camera and the right camera are identical but displaced along the
horizontal direction by a distance . The distance is called baseline. The
system that include the two cameras is called a stereo system.

We’re looking at one point in our left camera . That point corresponds
to an outgoing ray. But let’s say somehow we are able to find the
corresponding point in the right camera (the projection of the same
scene point in the right camera). We can shoot out another outgoing ray from
the right camera. Wherever those two rays intersect is where the scene point
lies. For now, let’s assume that the corresponding point in the right camera

 is known for us (finding given is the stereo matching
problem, the topic of the next paragraph).

We have four equations, that are the perspective projection equations for the
left and right camera:

	 	 	

By simply solving these four equations we get an equation for , and :

The coordinate is called the depth of the point in the scene.

The difference of the coordinates of the same scene point in the two images
 is called disparity.

Depth is inversely proportional to disparity. If we have a scene at infinity and
if you take two images of the scene doesn’t really matter how far these
cameras are with respect to each other (the baseline), you’re going to get

b b

(ul, vl)

(ur, vr)

(ur, vr) (ur, vr) (ul, vl)

ul = fx
x
z + ox

vl = fy
y
z + oy

ur = fx
x − b

z + ox

vr = fy
y
z + oy

x y z

x =
b(ul − ox)

ul − ur

y =
bfx(vl − oy)

fy(ul − ur)

z =
bfx

ul − ur

z

ul − ur

b

30 Mattia Tritto

two identical images. As the scene gets closer and closer you’re going to see
differences in the projections.

We want to use a stereo configuration where the baseline is large, because the
larger the baseline, the larger is the disparity, and this reduces the errors
when we’re trying to estimate the depth.

3.3 - Stereo matching: finding disparities

Measuring the disparity means estimating the depth of the scene. The goal is
to find the disparity between left and right stereo pairs.

On the right side we have the disparity map: the closer the points, the greater
the disparity and the brighter it is in the disparity map.

In this example, the disparity in the direction is 0. It means that
corresponding points must lie on the same horizontal line in both the images.
But how do we compute disparity? We use template matching to achieve
our goal.

y

31 Mattia Tritto

Figure 13: A disparity map of a particular scene, credits: https://www.researchgate.net/figure/Ground-
truth-of-disparity-map-and-disparity-map-obtained-by-Belief-Propagation_fig6_224351635

https://www.researchgate.net/figure/Ground-truth-of-disparity-map-and-disparity-map-obtained-by-Belief-Propagation_fig6_224351635
https://www.researchgate.net/figure/Ground-truth-of-disparity-map-and-disparity-map-obtained-by-Belief-Propagation_fig6_224351635
https://www.researchgate.net/figure/Ground-truth-of-disparity-map-and-disparity-map-obtained-by-Belief-Propagation_fig6_224351635

The first step is to take a little window on the left image, and then find the
corresponding window in the right image. Of course we don’t need to look for
the corresponding point in the intere image, we know that the corresponding
point in the right image must lie in the same horizontal scan line:

After the matching, we can compute the disparity and the depth of the
image:

How large the windows should be? If the window is really small, we’re going
to get good localization but high sensitivity to noise. On the other hand, if we
use larger windows, we’re going to get more robust matches in terms of the
depth of values but the disparity map is going to be more blurred especially
at boundaries (poor localization).

ul − ur

z =
bfx

ul − ur

32 Mattia Tritto

Figure 14: Representation of the template window in the left camera and the search line in the right
camera, credits: https://www.researchgate.net/figure/Ground-truth-of-disparity-map-and-disparity-map-
obtained-by-Belief-Propagation_fig6_224351635

https://www.researchgate.net/figure/Ground-truth-of-disparity-map-and-disparity-map-obtained-by-Belief-Propagation_fig6_224351635
https://www.researchgate.net/figure/Ground-truth-of-disparity-map-and-disparity-map-obtained-by-Belief-Propagation_fig6_224351635
https://www.researchgate.net/figure/Ground-truth-of-disparity-map-and-disparity-map-obtained-by-Belief-Propagation_fig6_224351635

Metrics used for template matching are:

1) finding the pixel with minimum sum of absolute differences:

2) finding the pixel with minimum sum of squared differences:

3) finding the pixel with maximum normalised cross-correlation:

(k, l) ∈ L

SAD(k, l) = ∑
(i, j)∈T

|El(i, j) − Er(i + k, j + l) |

(k, l) ∈ L

SSD(k, l) = ∑
(i, j)∈T

|El(i, j) − Er(i + k, j + l) |2

(k, l) ∈ L

NCC(k, l) =
∑(i, j)∈T El(i, j)Er(i + k, j + l)

∑(i, j)∈T El(i, j)2 ∑(i, j)∈T El(i + k, j + l)2

33 Mattia Tritto

Figure 15: Differences between small and large windows sizes

Some problems of the stereo matching process are:

• surfaces used for stereo matching must have non-repetitive texture (if
there aren’t any texture there isn’t any match, but if there are repetitive
texture there are multiple matches, and the stereo matching is not unique);

• foreshortening effect makes matching really challenging. So often in
stereo matching there are warping techniques to make the matching process
more robust.

34 Mattia Tritto

Chapter 4 - Stereo reconstruction
with uncalibrated cameras

4.1 - Overview of the uncalibrated stereo case

Let’s take two arbitrary pictures of a 3D scene. Of course we have no idea of
where these picture were taken from with respect to each other. But it turns
out that if we know the internal parameters of the two cameras, then from
these two arbitrary views we can compute the translation and rotation of one
camera with respect to another camera. And once that’s done, we can
reconstruct a three dimensional model of the scene. This is the problem of
uncalibrated stereo.

The internal parameters of both cameras are generally known. Often they’re
available to us in terms of the method tag that goes with each image that’s
captured in modern day digital cameras. Or if we don’t have these
information, we can perform a simple calibration with the steps provided in
the first chapter.

Next, we’re going to use a small number of corresponding points in these two
arbitrary views to estimate the fundamental matrix . Once we have , we
can go ahead and find the rotation and translation of one camera with respect
to each other. The stereo system is fully calibrated now.

The last step is to compute depth. In order to compute depth, we’re going to
find dense correspondences between the two images. Ideally, for every point in
the left image, we want to know where the corresponding point in the right
image is. This boils down to a 1D search in the right image using stereo
matching.

F F

35 Mattia Tritto

4.2 - Epipolar geometry

In order to resolve this problem, we need to formulate the geometric
relationship between the left and right camera. This is called epipolar
geometry. Epipolar geometry tells us that points in the left and right image
are related to each other through a single matrix called the fundamental
matrix, which contains the rotation and translation of one camera with
respect to each other. The calibration problem boils down to finding the
fundamental matrix.

The projection of the center of the left camera into the right camera image
and the projection of the center of the right camera on the left camera image
these are referred to as the epipoles of the stereo system (and). Any given
stereo system, it has a unique pair of and .

The epipolar plane of the scene point is the plane formed by camera origins
 and , epipoles and and scene point . So every scene point lies on a

unique epipolar plane.

3x3

el er
el er

P
Ol Or el er P

36 Mattia Tritto

Figure 16: Representation of the epipoles and the epipolar plane

We’re going to use the epipolar plane to set up what’s called the epipolar
constraint. This includes the parameters and .

Let’s define a normal vector that is normal to this plane, defined as:

So the epipolar constraint is the dot product of and , and this is equal
to zero:

If we rewrite the epipolar constraint in matrix form we obtain:

We can rearrange this equation, isolating in a single matrix the translation
parameters (translation matrix):

t R

n = t × xl

n xl

xl ⋅ (t × xl) = 0

[xl yl zl]
tyzl − tzyl

tzxl − txzl
txyl − tyxl

= 0

t Tx

37 Mattia Tritto

Figure 17: Representation of the epipolar plane

Now we add another constraint. We know is the position of the right
camera in the left camera’s frame and is the orientation of the left
camera in the right camera’s frame. Using these two, we can relate the 3D
coordinates of a point P in the left camera to the 3D coordinates of the same
point in the right camera. So we have:

If we expand this equation:

The product of translation matrix and rotation matrix is called the
essential matrix . The main propriety of is that we can actually decompose
into and . Given that is a skew-symmetric matrix () and is
an orthonormal matrix, it is possible to decouple and from by using
singular value decomposition:

If is known, we can calculate and . In the end, we obtain:

[xl yl zl]
0 −tz ty
tz 0 −tx

−ty tx 0

xl
yl
zl

= 0

t3×1
R3×3

xl = Rxr + t

xl
yl
zl

=
r11 r12 r13
r21 r22 r23
r31 r32 r33

[
xr
yr
zr

] +
tx
ty
tz

Tx R
E E

Tx R Tx aij = − aij R
Tx R E

e11 e12 e13
e21 e22 e23
e31 e32 e33

=
0 −tz ty
tz 0 −tx

−ty tx 0

r11 r12 r13
r21 r22 r23
r31 r32 r33

E t R

[xl yl zl]
e11 e12 e13
e21 e22 e23
e31 e32 e33

[
xr
yr
zr

] = 0

38 Mattia Tritto

Unfortunately, we don’t have and . But what we do know corresponding
points in image coordinates. Let’s go back and take the perspective equations
for the left camera:

Now using homogenous coordinates we can write:

Where is known to us, and is the camera matrix of the left camera. We get
such an equation for each one of our views:

	 	 	

We can rewrite these two in a more compact form:

	 	 	 	

If we substitute these two in the epipolar constraint, we obtain:

xl xr

{
zlul = f (l)

x xl + zlo(l)
x

zlvl = f (l)
y yl + zlo(l)

y

zl [
ul
vl

1] =
zlul
zlvl
zl

=
f (l)

x xl + zlo(l)
x

f (l)
y yl + zlo(l)

y
zl

=
f (l)

x 0 o(l)
x

0 f (l)
y o(l)

y

0 0 1

xl
yl
zl

= Klxl

Kl

zl [
ul
vl

1] =
f (l)

x 0 o(l)
x

0 f (l)
y o(l)

y

0 0 1

xl
yl
zl

zr [
ur
vr

1] =
f (r)

x 0 o(r)
x

0 f (r)
y o(r)

y

0 0 1
[

xr
yr
zr

]

xT
l = [ul vl 1] zlK−1T

l xr = K−1
r zr [

ur
vr

1]

[xl yl zl]
e11 e12 e13
e21 e22 e23
e31 e32 e33

[
xr
yr
zr

] = 0

[ul vl 1] zlK−1T

l

e11 e12 e13
e21 e22 e23
e31 e32 e33

K−1
r zr [

ur
vr

1] = 0

39 Mattia Tritto

But in this expression we still have and which are the 3D coordinates
that we don’t know. Assuming that and (the depth of any point
cannot be zero, if it is zero the point lies at the center of projection) the rest
of the equation should be equal to 0. So we can simply eliminate and
from this equation to get this:

Now we have scene points expressed in terms of the image coordinates. The
only unknown matrix is . The product of , and is called the
fundamental matrix . So the equation becomes:

If we find the fundamental matrix, it is simple to extract the essential matrix
:

zl zr
zl ≠ 0 zr ≠ 0

zl zr

[ul vl 1] K−1T

l

e11 e12 e13
e21 e22 e23
e31 e32 e33

K−1
r [

ur
vr

1] = 0

E K−1T

l E K−1T
r

F

[ul vl 1]
f11 f12 f13

f21 f22 f23

f31 f32 f33
[

ur
vr

1] = 0

E

E = K−1T

l FKr

40 Mattia Tritto

4.3 - Estimating the fundamental matrix F

The first step is to find a small number of corresponding features in the two
images given to us using SIFT algorithm:

The image coordinates of these points are the following:

	 	 	 	

For each correspondence , we can write out our epipolar constraint:

If we simply write out this expression for very correspondence we get
linear equations, that can be written to form a linear system:

m

(u(1)
l , v(1)

l)…(u(m)
l , v(m)

l) (u(1)
r , v(1)

r)…(u(m)
r , v(m)

r)

i

[u(i)
l v(i)

l 1]
f11 f12 f13

f21 f22 f23

f31 f32 f33

u(i)
r

v(i)
r

1

= 0

i m

41 Mattia Tritto

Figure 18: Example of SIFT algorithm applied on these two photos of Arc de Triomphe, credits: https://
youtu.be/erpiFudDBlg

https://youtu.be/erpiFudDBlg
https://youtu.be/erpiFudDBlg

In a more compact form:

If we look at the fundamental matrix, it is acting on homogeneous
coordinates. So if we take the epipolar constraint we obtain:

If we multiply the fundamental matrix with a constant , it doesn’t matter.

In other words, the fundamental matrix and describe the same epipolar
geometry. is defined only up to a scale.

We set the scale so that:

So, we want as close to as possible and .

In mathematical terms:

 such that

u(1)
l u(1)

r u(1)
l v(1)

r u(1)
l v(1)

l u(1)
r v(1)

l v(1)
r v(1)

l u(1)
r v(1)

r 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

u(i)
l u(i)

r u(i)
l v(i)

r u(i)
l v(i)

l u(i)
r v(i)

l v(i)
r v(i)

l u(i)
r v(i)

r 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

u(m)
l u(m)

r u(m)
l v(m)

r u(m)
l v(m)

l u(m)
r v(m)

l v(m)
r v(m)

l u(m)
r v(m)

r 1

f11

f12

f13

f21

f22

f23

f31

f32

f33

= 0

Af = 0

[ul vl 1]
f11 f12 f13

f21 f22 f23

f31 f32 f33
[

ur
vr

1] = 0 = [ul vl 1]
k f11 k f12 k f13

k f21 k f22 k f23

k f31 k f32 k f33
[

ur
vr

1]
F k

F kF
F

∥f∥2 = 1

Af 0 ∥f∥2 = 1

min
f

∥Af∥2 ∥f∥2 = 1

42 Mattia Tritto

This is equivalent to resolve this eigenvalue problem:

In other words, the that we’re looking for is the smallest eigenvalue of the
matrix that minimize the loss function . Once we have , we
rearrange the elements of to form the fundamental matrix . Now we can
compute the essential matrix by using this equation:

And now we can decompose in and using singular value decomposition:

4.4 - Finding correspondences

In uncalibrated stereo, finding correspondences it is equivalent to the
calibrated stereo case scenario (1D search after having found and). But
the question is on which line should be searching? This bring back to the
epipolar geometry, in particular to the definition of epipolar line:

AT f = λf

f λ
AT A L(f) f

f F
E

E = K−1T

l FKr

E R t

E = TxR

R t

43 Mattia Tritto

Figure 19: Representation of epipolar lines

The epipolar lines are the intersection of image planes and the epipolar plane.
Every scene has two corresponding epipolar lines, one each on the two image
planes.

So given a point in one image, the corresponding point in the other image
must lie on the epipolar line.

If we know the fundamental matrix , we can derive the equation of the
straight line in the right image along which the search needs to be done.

The epipolar constraint is:

In this case we only don’t know . Expanding the matrix equation:

So the equation for the right epipolar line is:

Likewise, we can calculate epipolar line in the left image for a point in the
right image.

F

[ul vl 1]
f11 f12 f13

f21 f22 f23

f31 f32 f33
[

ur
vr

1] = 0

[
ur
vr

1]
(f11ul + f21vl + f31)ur + (f12ul + f22vl + f32)vr + (f13ul + f23vl + f33) = 0

alur + blvr + cl = 0

44 Mattia Tritto

This is an example:

Now if we want to find the point on the left image on the right image, we
have to search in the epipolar line, using the stereo matching algorithm
described in the 3.3 paragraph.

45 Mattia Tritto

Figure 20: Given a point in the left image, the correspondent point in the right image must lie on the epipolar
line, credits: https://youtu.be/erpiFudDBlg

https://youtu.be/erpiFudDBlg

Chapter 5 - ORB-SLAM3

5.1 - What is ORB-SLAM3

ORB-SLAM3 is a SLAM system (Visual Simultaneous Localization and
Mapping). It is a software library developed for robots and other devices
equipped with a camera that allows them to build a map of their environment
and localize themselves within it, all in real-time.

The system is based on the ORB (Oriented FAST and Rotated BRIEF)
feature detector and descriptor, which allows it to efficiently detect and match
visual features in an image. ORB-SLAM3 uses a combination of monocular,
stereo, and RGB-D cameras to estimate the camera pose and build a 3D map
of the environment.

The system has several advanced features, such as loop closing, relocalization,
and dynamic object detection, that improve its accuracy and robustness in
real-world scenarios. It has been widely used in robotics, augmented reality,
and autonomous driving applications.

46 Mattia Tritto

Figure 21: Map Viewer of ORB-SLAM3

5.2 - Stereo camera calibration using OpenCV

This paragraph describes the setup for stereo calibration using a dataset of
stereo images of chessboards patterns taken at different angles and views. The
image dataset was taken online, and contains 25 stereo images of
checkerboard patterns (https://www.kaggle.com/datasets/danielwe14/
stereocamera-chessboard-pictures).

The script used for stereo calibration is written in a generic way, making it
adaptable for any stereo camera setup. It doesn't need to know the baseline:
it automatically detects and calculates it from the stereo images.

The first thing to do is to specify the number of squares on the and axis,
and also the frame sizes of the images:

After loading all the images present in the stereoLeft and stereoRight
directories, we can loop through every stereo pairs and transform the images
to black and white. These images are passed to the findChessboardCorners()
function, that requires what kind of pattern we are looking for and the black
and white images.

It returns the corner points and a boolean value which will be true if the
pattern is recognised:

x y

47 Mattia Tritto

chessboardSize = (7, 11)
frameSize = (964, 686)

imgL = cv.imread(imgLeft)
imgR = cv.imread(imgRight)
grayL = cv.cvtColor(imgL, cv.COLOR_BGR2GRAY)
grayR = cv.cvtColor(imgR, cv.COLOR_BGR2GRAY)

retL, cornersL = cv.findChessboardCorners(grayL,
chessboardSize, None)
retR, cornersR = cv.findChessboardCorners(grayR,
chessboardSize, None)

https://www.kaggle.com/datasets/danielwe14/stereocamera-chessboard-pictures
https://www.kaggle.com/datasets/danielwe14/stereocamera-chessboard-pictures
https://www.kaggle.com/datasets/danielwe14/stereocamera-chessboard-pictures

Once the script find the corners, we can increase their accuracy using
cv.cornerSubPix(). We can also draw the pattern using
cv.drawChessboardCorners():

48 Mattia Tritto

cornersL = cv.cornerSubPix(grayL, cornersL, (11, 11),
(-1,-1), criteria)
imgpointsL.append(cornersL)
cornersR = cv.cornerSubPix(grayR, cornersR, (11, 11),
(-1, -1), criteria)
imgpointsR.append(cornersR)

cv.drawChessboardCorners(imgL, chessboardSize, cornersL,
retL)
cv.imshow('img left', imgL)
cv.drawChessboardCorners(imgR, chessboardSize, cornersR,
retR)
cv.imshow('img right', imgR)

Figure 22: OpenCV recognizes and highlights the chessboard corners on the original image

Now that we have our object points and image points, we are ready to go for
the stereo calibration. We can use the function cv.calibrateCamera() which
returns the camera matrix, distortion coefficients, rotation and translation
vectors for both the left and right camera:

We can refine the camera matrix based on a free scaling parameter using
cv.getOptimalNewCameraMatrix(). If the scaling parameter , it returns
undistorted image with minimum unwanted pixels. So it may even remove
some pixels at image corners. If , all pixels are retained with some extra
black images. This function also returns an image ROI which can be used to
crop the result:

α = 0

α = 1

49 Mattia Tritto

retR, cameraMatrixR, distorsionCoefficientsR,
rotationVectorsR, traslationVectorR =
cv.calibrateCamera(objectPointsoints, imgpointsR,
frameSize, None, None)

heigthR, widthR, channelsR = imgR.shape
newCameraMatrixR, roi_R =
cv.getOptimalNewCameraMatrix(cameraMatrixR,
distorsionCoefficientsR, (widthR, heigthR), 1, (widthR,
heigthR))

Now we want to find the relative position of one camera with respect to the
other camera. The function cv.stereoCalibrate() computes such that:

Therefore, one can compute the coordinate representation of a 3D point for
the second camera's coordinate system when given the point's coordinate
representation in the first camera's coordinate system:

This function also computes the essential matrix and the fundamental
matrix :

(R, T)

{R2 = RR1
T2 = RT1 + T

x2
y2
z2

1

= [R T
0 1]

x1
y1
z1

1

E
F

E =
0 −T2 T1

T2 0 −T0

−T1 T0 0
R

50 Mattia Tritto

flags = 0
flags |= cv.CALIB_FIX_INTRINSIC
criteria_stereo = (cv.TERM_CRITERIA_EPS +
cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)

retStereo, newCameraMatrixL, distorsionCoefficientsL,
newCameraMatrixR, distorsionCoefficientsR,
rot ,trans ,essentialMatrix, fundamentalMatrix =
cv.stereoCalibrate(objectPointsoints, imgpointsL,
imgpointsR, newCameraMatrixL, distorsionCoefficientsL,
newCameraMatrixR, distorsionCoefficientsR, grayL.shape [::
-1], criteria_stereo, flags)

The function cv.stereoRectify() computes the rotation matrices for each
camera that (virtually) make both camera image planes the same plane.
Consequently, this makes all the epipolar lines parallel and thus simplifies the
dense stereo correspondence problem. The function takes the matrices
computed by cv.stereoCalibrate() as input. As output, it provides two rotation
matrices and also two projection matrices in the new coordinates.

The new matrices, together with and , can then be passed to
cv.initUndistortRectifyMap() to initialize the rectification map for each
camera. Computes the undistortion and rectification transformation map.

The function computes the joint undistortion and rectification transformation
and represents the result in the form of maps. The undistorted image looks
like original, as if it is captured with a camera with zero distortion.

The function actually builds the maps for the inverse mapping algorithm that
is used by remap. That is, for each pixel in the destination (corrected
and rectified) image, the function computes the corresponding coordinates in
the source image (that is, in the original image from camera):

Here below, we can see a comparison between the original image, and the
corresponding rectified image:

F = cameraMatrix2T ⋅ E ⋅ cameraMatrix−1

R1 R2

(u, v)

51 Mattia Tritto

rectifyScale = 1
rectL, rectR, projMatrixL, projMatrixR, Q, roi_L, roi_R =
cv.stereoRectify(newCameraMatrixL, distorsionCoefficientsL,
newCameraMatrixR, distorsionCoefficientsR,
grayL.shape[::-1], rot, trans, rectifyScale, (0,0))

5.3 - ORB-SLAM3 installation using Docker

For the installation of ORB-SLAM3, a Docker environment was utilized.
Docker provides a flexible and independent platform that allows the seamless
deployment of ORB-SLAM3 regardless of the host machine's specifications.

Docker ensures compatibility and ease of installation, enabling future
researchers and developers to replicate the experimental setup without
concerns regarding system dependencies or configurations.

The initial step involved the installation of Docker by following the
instructions provided on its official website (https://docs.docker.com/engine/
install/ubuntu/). This included carefully following the installation guidelines,
including any necessary post-installation steps outlined in the documentation.

Then, we’ve cloned the official git repository of ORB-SLAM3 (https://
github.com/UZ-SLAMLab/ORB_SLAM3) with the command:

After placing the Dockerfile inside the ORB-SLAM3 directory (Appendix
A.2), the next step involved executing the command:

52 Mattia Tritto

Figure 23: original image VS rectified image. Radial and tangential distortion is no longer visible to the naked eye

git clone https://github.com/UZ-SLAMLab/ORB_SLAM3

docker build --tag orb-slam3:1.0 .

https://github.com/UZ-SLAMLab/ORB_SLAM3
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
https://github.com/UZ-SLAMLab/ORB_SLAM3
https://github.com/UZ-SLAMLab/ORB_SLAM3

This command initiated the build process, leveraging the Dockerfile to
construct a Docker image specifically tailored for ORB-SLAM3. The provided
tag orb-slam3:1.0 served as an identifier for the generated image, ensuring its
distinctiveness and version control. This build command triggered the
execution of the instructions specified in the Dockerfile, including the
installation of necessary dependencies, configuration settings, and the setup of
the ORB-SLAM3 environment.

Following the successful build of the ORB-SLAM3 Docker image, the
subsequent step involved executing the command:

This command created a Docker container named orb-slam3 based on the
previously built image orb-slam3:1.0.

After creating the ORB-SLAM3 Docker container, the next step involved
executing the command:

This command granted permission for the root user inside the container to
access the host's X server. The X server is responsible for managing graphical
user interfaces, and by allowing the container's root user to connect to it, it
enabled the display of visual elements from within the container on the host
system.

To execute the ORB-SLAM3 Docker container, the following command was
utilized:

By utilizing this command, the ORB-SLAM3 Docker container was launched,
enabling the execution of the ORB-SLAM3 application while leveraging the
host's resources and graphical capabilities.

53 Mattia Tritto

docker create --name orb-slam3 orb-slam3:1.0

xhost +local:root

docker run -it --rm --net=host --volume="/dev:/dev" -e DISPLAY=unix$DISPLAY -v /

tmp/.X11-unix:/tmp/.X11-unix:rw --privileged orb-slam3:1.0

Inside the ORB-SLAM3 Docker container, the next step involved navigating
to the ORB-SLAM3 folder and running the build_ros.sh script. To do this,
execute the following commands within the container:

The build_ros.sh script is designed to facilitate the building and configuration
of ORB-SLAM3 with ROS. By executing this script, the necessary
dependencies, libraries, and configurations for ROS integration are set up,
ensuring the smooth operation of ORB-SLAM3 within the ROS ecosystem.

Once the ORB-SLAM3 compilation process is complete, you can proceed with
connecting the camera and running the subsequent commands:

1. Start the ROS core:

2. Launch the usb_cam package to interface with the USB camera:

54 Mattia Tritto

./build_ros.sh

roslaunch usb_cam usb_cam-test.launch &

roscore &

5.4 - Trajectory estimation using Python

After setting up our stereo system with complete calibration, our next step is
to estimate the trajectory. To achieve this, we will be using a python script
that is available in the ORB-SLAM3 repository (associate.py and
evaluate_ate_scale.py in the evaluation folder).

We used the EuRoC dataset as an example: it includes a sequence of "ground
truth" images, making it a suitable choice for our purposes.

EuRoC dataset is a publicly available dataset for evaluating visual odometry,
visual SLAM and related algorithms. It was created by the European
Roboticists Association and contains stereo and monocular sequences recorded
from a Micro Aerial Vehicle (MAV) flying in different environments, such as
indoor, outdoor, and forest areas.

The dataset provides ground-truth camera poses and high-precision
measurements of the MAV's motion, making it a valuable resource for
researchers and developers working on visual odometry and SLAM
algorithms.

The first thing to do is to launch the simulation using this command:

55 Mattia Tritto

./Examples/Stereo/stereo_euroc ./Vocabulary/ORBvoc.txt ./Examples/Stereo/EuRoC.yaml ~/

Datasets/EuRoC/MH01 ./Examples/Stereo/EuRoC_TimeStamps/MH01.txt dataset-MH01_stereo

After launching the simulation, we can run the evaluation.py script which
estimates the trajectory followed by the camera and, with the —verbose flag,
provides a series of errors that can be used to estimate the goodness of the
algorithm (it is essential to use the Python 2.7 interpreter and not version 3
for this code, as it has not been updated to run on version 3):

 
Which gives the following output:

56 Mattia Tritto

Figure 24: example of the output followed by the previous command

python2.7 evaluation/evaluate_ate_scale.py --verbose evaluation/Ground_truth/

EuRoC_left_cam/MH01_GT.txt f_dataset-MH01_stereo.txt --plot MH01_stereo.pdf

compared_pose_pairs 3638 pairs

absolute_translational_error.rmse 0.035956 m

absolute_translational_error.mean 0.033244 m

absolute_translational_error.median 0.036838 m

absolute_translational_error.std 0.013701 m

absolute_translational_error.min 0.002904 m

absolute_translational_error.max 0.104954 m

The results are saved in the MH01_stereo.pdf:

As is evident from the figure, the estimated trajectory in blue aligns precisely
with the ground truth trajectory in red. This indicates that the parameters
specified in the .yaml file are appropriate for the given dataset. 

57 Mattia Tritto

Figure 25: trajectory estimation of the EuRoC stereo dataset on the XY plane

Conclusions

In conclusion, the successful implementation of the stereo camera calibration
script, as well as the installation of ORB-SLAM3 highlight the significant
advancements in the field of simultaneous localization and mapping (SLAM).

The demonstrated effectiveness of the stereo camera calibration script
reaffirms its ability to accurately estimate intrinsic, extrinsic parameters and
the essential matrix , enabling precise depth perception and trajectory
estimation. Moreover, the satisfactory performance of ORB-SLAM3 showcases
its robustness and efficiency in real-time camera tracking and mapping.

Additionally, the introduction of Isaac SLAM (developed by NVIDIA) as an
alternative solution further expands the options available for researchers and
developers, with its unique features and capabilities. These advancements
hold great promise for various applications, including robotics and
autonomous navigation. As technology continues to evolve, the combination of
accurate calibration scripts and advanced SLAM algorithms paves the way for
even more sophisticated and reliable systems, ultimately driving progress in
the field and opening up new possibilities for future research and
development. 

E

58 Mattia Tritto

Bibliography

- McCarthy, J. J., Benjamin, J., Winton, T., & Van Duivenvoorde, W.

(2019). The Rise of 3D in Maritime Archaeology. Springer EBooks, 1–10.
https://doi.org/10.1007/978-3-030-03635-5_1

- ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–
Inertial, and Multimap SLAM. (2021, December 1). IEEE Journals &
Magazine | IEEE Xplore. https://ieeexplore.ieee.org/document/9440682

- First Principles of Computer Vision. (2021, April 18). Linear Camera
Model | Camera Calibration [Video]. YouTube. https://www.youtube.com/
watch?v=qByYk6JggQU

- First Principles of Computer Vision. (2021, April 18). Simple Stereo |
Camera Calibration [Video]. YouTube.

- First Principles of Computer Vision. (2021, April 25). Epipolar Geometry |
Uncalibrated Stereo [Video]. YouTube. https://www.youtube.com/watch?
v=6kpBqfgSPRc

- OpenCV: Camera Calibration. https://docs.opencv.org/4.x/dc/dbb/
tutorial_py_calibration.html

- Docker: Accelerated, Containerized Application Development. (2023)
https://www.docker.com/

- Chessboard Pictures for Stereocamera Calibration. (2022, January 20).
Kaggle. https://www.kaggle.com/datasets/danielwe14/stereocamera-
chessboard-pictures

- Jin, C., & Jeong, H. (2008). Intermediate View Synthesis for Multi-view 3D
Displays Using Belief Propagation-Based Stereo Matching. https://doi.org/
10.1109/iccit.2008.212

59 Mattia Tritto

https://doi.org/10.1007/978-3-030-03635-5_1
https://ieeexplore.ieee.org/document/9440682
https://www.youtube.com/watch?v=qByYk6JggQU
https://www.youtube.com/watch?v=qByYk6JggQU
https://www.youtube.com/watch?v=6kpBqfgSPRc
https://www.youtube.com/watch?v=6kpBqfgSPRc
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://www.docker.com/
https://www.kaggle.com/datasets/danielwe14/stereocamera-chessboard-pictures
https://www.kaggle.com/datasets/danielwe14/stereocamera-chessboard-pictures
https://www.kaggle.com/datasets/danielwe14/stereocamera-chessboard-pictures
https://doi.org/10.1109/iccit.2008.212
https://doi.org/10.1109/iccit.2008.212

	Chapter 1 - Introduction
	1.1 - An overview of autonomous underwater vehicles
	1.2 - Use cases of stereocameras underwater
	1.3 - What is the purpose of camera calibration
	1.4 - Monocular cameras
	1.5 - Binocular cameras
	1.6 - The mathematical model of thin lenses
	1.7 - Types of distortion introduced by real lenses

	Chapter 2 - Monocular calibration using a linear camera model
	2.1 - Overview of the calibration process
	2.2 - The 2D and 3D coordinate systems and the relationship between these three coordinate systems
	2.3 - The scale propriety of p and how do we choose the scale
	2.4 - Decomposing the projection matrix P
	2.5 - From camera coordinates to image coordinates: perspective projection
	2.6 - From world coordinates to camera coordinates
	2.7 - From world coordinates to image coordinates: combining the intrinsic and extrinsic matrix
	2.8 - Correction of radial and tangential distortion

	Chapter 3 - Stereo reconstruction with calibrated cameras
	3.1 - Why we use stereo cameras
	3.2 - Backward projection: from 2D to 3D
	3.3 - Stereo matching: finding disparities

	Chapter 4 - Stereo reconstruction with uncalibrated cameras
	4.1 - Overview of the uncalibrated stereo case
	4.2 - Epipolar geometry
	4.3 - Estimating the fundamental matrix F
	4.4 - Finding correspondences

	Chapter 5 - ORB-SLAM3
	5.1 - What is ORB-SLAM3
	5.2 - Stereo camera calibration using OpenCV
	5.3 - ORB-SLAM3 installation using Docker
	5.4 - Trajectory estimation using Python

	Conclusions
	Bibliography

