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Chapter 1 - Introduction 

1.1 - An overview of autonomous underwater 
vehicles 

Autonomous underwater vehicles (AUVs) are an essential tool for exploring 
the vast and complex ocean environment. These vehicles can perform various 
tasks, such as oceanographic surveys, environmental monitoring, and search 
and rescue operations. However, the success of these tasks depends on the 
vehicle's ability to navigate autonomously and accurately in the underwater 
environment.  

Unlike land-based robots, AUVs face significant challenges in underwater 
navigation, such as limited communication capabilities, harsh environmental 
conditions, and the complexity of the underwater environment. The 
development of advanced navigation techniques for AUVs is crucial to 
overcome these challenges and enable efficient and safe operations.  

Simultaneous localization and mapping (SLAM) is a popular navigation 
technique that uses onboard sensors to create a map of the vehicle's 
surroundings and estimate its position relative to the map. However, the 
accuracy of SLAM is affected by various factors, such as sensor noise, 
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Figure 1: An example of AUV, credits: https://www.blueoceanmts.com/news/
blog-post-three-tak7s 

https://www.blueoceanmts.com/news/blog-post-three-tak7s
https://www.blueoceanmts.com/news/blog-post-three-tak7s


environmental conditions, and the presence of obstacles. Thus, there is a need 
to develop robust SLAM algorithms that can handle these challenges. 

Path planning is another essential component of underwater autonomous 
navigation. AUVs need to plan their paths to optimize their mission 
objectives while avoiding obstacles and minimizing energy consumption.  

This thesis focuses on the calibration process of stereo cameras for underwater 
autonomous navigation, and it consists of the following chapters: 

• chapter 1 provides a brief introduction to Autonomous Underwater Vehicles 
(AUVs) and highlights the significance of stereo cameras in maritime 
environments. Emphasis is placed on the importance of camera calibration 
in the context of underwater autonomous navigation; 

• chapter 2 explains the process of performing a simple monocular 
calibration. This serves as a fundamental step in understanding stereo 
calibration; 

• chapter 3 explores the reconstruction of a 3D scene using two identical 
cameras that have already been calibrated. This chapter outlines the 
methodology and steps involved in achieving accurate 3D reconstruction; 

• chapter 4 focuses on reconstructing a 3D scene using two identical cameras 
that are not calibrated. The objective is to calibrate these cameras and 
follow the steps described in Chapter 3 for accurate reconstruction; 

• chapter 5 focuses on explaining the code for stereo reconstruction, the 
installation of a docker-version of ORB-SLAM3 and how to perform a 
trajectory estimation using Python. 

The research will continue on improving the accuracy and reliability of the 
stereo calibration in the underwater environment and evaluating their 
performance through simulations and field experiments. 

1.2 - Use cases of stereocameras underwater 

Highly constrained patterns of stereo photographs can be used to 
automatically generate a detailed 3D model of a site, shipwreck or artefacts. 
Based on citations in the literature, underwater camera systems are now 
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widely employed in preference to manual methods as a non-contact, non-
invasive technique to capture accurate length information and thereby 
estimate biomass or population fish distributions. 
 

There are many other applications of underwater photogrammetry. Stereo  
camera systems were used to conduct the first accurate seabed mapping 
applications and have been used to measure the growth of coral. Single and 
stereo cameras have been used for monitoring of submarine structures, most 
notably to support energy exploration and extraction in the North Sea, 3D 
models of sea grass meadows and inshore sea floor mapping. 

1.3 - What is the purpose of camera calibration 

Calibration of any camera system is essential to achieve accurate and reliable 
measurements. Small errors in the perspective projection must be modelled 
and eliminated to prevent the introduction of systematic errors in the 
measurements. In the underwater environment, the calibration of the cameras 
is of even greater importance because the effects of refraction through the 
air, housing and water interfaces must be incorporated. 

The common factor for all these applications of underwater use cases is a 
specified level of accuracy. Photogrammetric surveys for heritage recording, 
marine biomass or fish population distributions are directly dependent on the 
accuracy of the 3D measurements. Any inaccuracy will lead to significant 
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Figure 2: Stereocamera guided by a professional 
diver, credits: https://
www.livingoceansfoundation.org/profile/jfreund/ 

https://www.livingoceansfoundation.org/profile/jfreund/
https://www.livingoceansfoundation.org/profile/jfreund/


errors in the measured dimensions of artefacts, under or over estimation of 
biomass or a systematic bias in the fish population distribution. 

1.4 - Monocular cameras 

Monocular cameras, also known as single-lens cameras, are cameras that use a 
single lens to capture images or videos. Unlike stereo cameras, which use two 
lenses to create a three-dimensional image, monocular cameras capture a 2D 
image that represents a flat projection of the scene. 

Monocular cameras are commonly used in smartphones, digital cameras, and 
other consumer electronics. They are also used in robotics, autonomous 
vehicles, and other applications that require visual sensing. 

One of the advantages of monocular cameras is their simplicity and cost-
effectiveness. They require fewer components than stereo cameras and can be 
manufactured at a lower cost. Monocular cameras also have a smaller form 
factor, making them ideal for applications where space is limited. 

However, one of the limitations of monocular cameras is their inability to 
capture depth information directly. Without depth information, it can be 
difficult to accurately estimate the distance between objects in the scene. This 
can limit their use in applications that require precise distance measurement, 
such as 3D modelling, augmented reality, and autonomous navigation. 

To overcome this limitation, monocular cameras can be paired with other 
sensors, such as LiDAR or depth sensors, to capture depth information. 
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1.5 - Binocular cameras 

Binocular cameras, also known as stereo cameras or depth cameras, use two 
or more cameras to capture stereo images that can be used to create a 3D 
representation of the scene. The cameras are typically positioned a short 
distance apart, mimicking the way that our eyes capture images from slightly 
different viewpoints. 

The two cameras capture images simultaneously, and the resulting stereo 
image pair can be used to calculate the depth information of the scene. The 
depth information is calculated by analysing the differences between the two 
images, such as disparities in position or texture. The greater the difference 
between the two images, the closer the object is to the cameras. 

Stereo cameras have a wide range of applications, from computer vision and 
robotics to entertainment and virtual reality. They are commonly used in 3D 
scanning and modelling, object recognition, tracking, and autonomous 
navigation. 
One of the advantages of stereo cameras is their ability to capture depth 
information using computer vision techniques. This makes them highly 
accurate and reliable in applications that require precise depth measurement. 
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Figure 3: an example of a monocular 
camera that can be attached on a 
Raspberry PI (OV9281-160), credits: 
https://it.aliexpress.com/item/
1005003962468246.html 

https://it.aliexpress.com/item/1005003962468246.html
https://it.aliexpress.com/item/1005003962468246.html


However, stereo cameras can be more complex and expensive than monocular 
cameras, as they require multiple lenses and sensors. They can also be more 
difficult to calibrate, as the cameras must be precisely aligned and 
synchronised to ensure accurate depth calculation. 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Figure 4: an example of a stereo camera (Intel RealSense D455), 
credits: https://www.amazon.it/Intel-Fotocamera-RealSense-
profondit%C3%A0-D455/dp/B08HHHDRNM

https://www.amazon.it/Intel-Fotocamera-RealSense-profondit%C3%A0-D455/dp/B08HHHDRNM
https://www.amazon.it/Intel-Fotocamera-RealSense-profondit%C3%A0-D455/dp/B08HHHDRNM
https://www.amazon.it/Intel-Fotocamera-RealSense-profondit%C3%A0-D455/dp/B08HHHDRNM


1.6 - The mathematical model of thin lenses  

The model of thin lenses is a simplified mathematical representation of how 
lenses work. It is based on the assumption that lenses are thin and can be 
modelled as a single curved surface with a constant thickness. The model is 
widely used in optics and is essential for understanding how light is refracted 
through lenses and how images are formed. 

According to the model, a thin lens can be represented by a single curved 
surface with a focal point and a focal length. The focal point is the point on 
the optical axis where parallel rays of light converge after passing through the 
lens. The focal length is the distance between the center of the lens and the 
focal point. 

The model also includes the lens equation, which relates the distance of an 
object from the lens, the distance of the image from the lens, and the focal 
length of the lens. The lens equation can be expressed as: 

 

where  is the focal length,  is the object distance, and  is the image 
distance. This equation is used to calculate the position and size of the image 
formed by a lens. 
 

1
f

=
1
p

+
1
q

f p q
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The model of thin lenses is useful for understanding the basic principles of 
optics and for designing and analysing optical systems. It is also used in the 
design of eyeglasses, cameras, telescopes, and other optical instruments. 

However, it is important to note that the thin lens model is a simplified 
representation of how lenses work and does not account for all the factors that 
can affect the behaviour of light, such as lens aberrations and the dispersion 
of light. These factors must be taken into account in more complex optical 
systems and designs. 

1.7 - Types of distortion introduced by real lenses 

Barrel and pincushion distortion are two types of radial distortion that can 
occur in photography. Each type of distortion affects the image differently and 
can be caused by different factors. 

Barrel distortion is a type of radial distortion where straight lines near the 
edges of an image appear to bend outwards, creating a barrel shape. This 
type of distortion is commonly seen in wide-angle lenses, where the angle of 
view is wider than that of the human eye. It can also occur in images that 
have been digitally processed or scanned. Barrel distortion can be corrected 
using specialized software or by adjusting the lens settings. 

13 Mattia Tritto

Figure 6: example of the barrel 
distortion, credits: https://
learnopencv.com/understanding-
lens-distortion/ 

https://learnopencv.com/understanding-lens-distortion/
https://learnopencv.com/understanding-lens-distortion/
https://learnopencv.com/understanding-lens-distortion/


Pincushion distortion, on the other hand, is the opposite of barrel distortion. 
It causes straight lines near the edges of an image to bend inwards, creating a 
pincushion shape. This type of distortion is often seen in telephoto lenses, 
where the angle of view is narrower than that of the human eye. Pincushion 
distortion can also be corrected using specialized software or by adjusting the 
lens settings. 
 

Tangential distortion is a type of lens distortion that causes straight lines near 
the edges of an image to appear curved. Unlike barrel distortion and 
pincushion distortion, which cause the entire image to bend outward or 
inward, tangential distortion creates a wavy pattern near the edges of the 
image. 
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Figure 7: example of the pincushion 
distortion, credits: https://
learnopencv.com/understanding-lens-
distortion/ 

https://learnopencv.com/understanding-lens-distortion/
https://learnopencv.com/understanding-lens-distortion/
https://learnopencv.com/understanding-lens-distortion/


Tangential distortion occurs when the lens elements are not perfectly aligned 
with the image sensor or film plane. This can cause some areas of the image 
to be in sharper focus than others, resulting in distortion. The distortion is 
more pronounced in wide-angle lenses, which have a wider field of view and 
therefore capture more of the scene. 

15 Mattia Tritto

Figure 8: example of tangential distortion, credits: https://
learnopencv.com/understanding-lens-distortion/ 

https://learnopencv.com/understanding-lens-distortion/
https://learnopencv.com/understanding-lens-distortion/


Chapter 2 - Monocular calibration 
using a linear camera model 

2.1 - Overview of the calibration process 

Suppose we have a 2D image. The main goal of camera calibration is to 
correctly project the 2D image points into the 3D world points. To do this we 
need: 

1) position and orientation of the camera compared to the 3D world 
coordinates system (these are called external parameters of the 
camera); 

2) parameters that belong to the camera used to take the photo, such as the 
focal length (these are called internal parameters of the camera). 

Calibrating a camera means finding the internal and external parameters. 
Before trying to estimate internal and external parameters, we need a camera 
model. In our case, we use a simple linear camera model that is 
computationally simple to compute. The model is a single matrix called the 
projection matrix . 

2.2 - The 2D and 3D coordinate systems and the 
relationship between these three coordinate 
systems 

Before going into the details of calibration, we first need to define three 
coordinate systems. 

The first one is the world coordinate system (or 3D coordinate system). 
Every point in the 3D world is measured based on where we placed the origin 
of . 

P

𝕎
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The second one is the camera coordinate system  (3D coordinate 
system). The  axis of the camera coordinate frame is aligned with the optical 
axis of the camera. The origin of  is where our camera lies. 

The third one is the image coordinate system (2D coordinate system). 

Every point in the 3D-world is represented in the  vector: 

 

In the 2D-image coordinate system, the same point is described in the  
vector: 

 

If we know the relative position and orientation of the camera coordinate 
frame with respect to the world coordinate frame then we can write an 
expression that takes all the way from the point P in  to its projection 
on the image plane. 

For each corresponding point  in scene and image, we have this 
correspondence: 

 

ℂ
Z

ℂ

xW

xw =
xw
yw
zw

u

u = [u
v]

𝕎 (u, v)

i

u(i)

y(i)

1
≡

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

x (i)
w

y(i)
w

z (i)
w

1
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The known terms are the first vector and the last vector. We don’t know the 
projection matrix . 

If we expand the matrix as linear equations we obtain: 

 

 

If we re-arrange the terms in order to have a matrix  with known elements 
and a vector  with unknown elements we obtain: 

 

 

In a compact form: 

 

Where  is the projection matrix  written as a vector. 

P

u(i) =
p11x (i)

w + p12y(i)
w + p13z (i)

w + p14

p31x (i)
w + p32y(i)

w + p33z (i)
w + p34

v(i) =
p21x (i)

w + p22y(i)
w + p23z (i)

w + p24

p31x (i)
w + p32y(i)

w + p33z (i)
w + p34

A
p

x (1)
w y(1)

w z (1)
w 1 0 0 0 0 −u1x (1)

w −u1y(1)
w −u1z (1)

w −u1

0 0 0 0 x (1)
w y(1)

w z (1)
w 1 −v1x (1)

w −v1y(1)
w −v1z (1)

w −v1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

x (i)
w y(i)

w z (i)
w 1 0 0 0 0 −uix (i)

w −uiy(i)
w −uiz (i)

w −ui

0 0 0 0 x (i)
w y(i)

w z (i)
w 1 −vix (i)

w −viy(i)
w −viz (i)

w −vi
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

x (n)
w y(n)

w z (n)
w 1 0 0 0 0 −unx (n)

w −uny(n)
w −unz (n)

w −un

0 0 0 0 x (n)
w y(n)

w z (n)
w 1 −vnx (n)

w −vny(n)
w −vnz (n)

w −vn

p11
p12
p13
p14
p21
p22
p23
p24
p31
p32
p33
p34

=

0
0
0
0
0
0
0
0
0
0
0

Ap = 0

p P
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2.3 - The scale propriety of p and how do we 
choose the scale 

An important propriety of  is the scale propriety. This means that the 
projection matrix acts on homogeneous coordinates: 

 

 

Where k is a constant, . Therefore, projection matrices  and  
produce the same homogenous pixel coordinates . The projection matrix 
 is defined only up to a scale. 

In other words, scaling the projection matrix implies simultaneously scaling 
the world and the camera, which does not change the image. 

p

[
ũ
ṽ
w̃] ≡ k [

ũ
ṽ
w̃]

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

xw
yw
zw

1

≡ k
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

xw
yw
zw

1

k ≠ 0 ∈ ℝ P kP
(u, v)

P
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Figure 9: Example of scaling the projection matrix P



But how we choose the scale of ? We have two options: 

1) set the scale so that one of the 12 elements of the projection matrix  is 
equal to one ( ); 

2) set the scale so that . 

In this case, we’re choosing the second option. 

We want  as close to  as possible, and . In mathematical terms: 

 such that  

Can be rewritten as: 
 such that  

This kind of problem is called the constraint least squares problem. 

We can define a loss function  as follows: 

 

The goal is to minimize this function. We calculate the derivatives of 
with respect to  and we place equal to 0: 

 

This is equivalent to resolve this eigenvalue problem: 

 

In other words, the  that we’re looking for is the smallest eigenvalue  of the 
matrix  that minimize the loss function . Once we have , we re-
arrange the elements of  to form the projection matrix P. 

P

P
pij = 1

∥p∥2 = 1

Ap 0 ∥p∥2 = 1

min
p

∥Ap∥2 ∥p∥2 = 1

min
p

(pT AT Ap) pTp = 1

L(p, λ)

L(p, λ) = pT AT Ap − λ(pTp − 1)

L(p, λ)
p

2AT Ap − 2λp = 0

AT Ap = λp

p λ
AT A L(p) p

p
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2.4 - Decomposing the projection matrix P 

From the projection matrix , we can decompose it into the intrinsic matrix 
 and the extrinsic matrix  (to isolate the intrinsic and extrinsic 

parameters): 

 

Let’s consider this  sub-matrix : 

 

The goal is to find to matrices  and  so that: 

 

 is the calibration matrix, which contains all the intrinsic parameters, and  
is the rotation matrix. Given that  is an upper-right triangular matrix and  
is an orthonormal matrix, it is possible to uniquely decouple  and  using 
QR decomposition: 

   

To find the translation vector , let’s extract the fourth column of the 
projection matrix . This is equal to: 

P
Mint Mext

P =
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

=
fx 0 ox 0
0 fy oy 0
0 0 1 0

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

3x3 P̃

P̃ =
p11 p12 p13
p21 p22 p23
p31 p32 p33

K R

P̃ = KR

K R
K R

K R

P̃ =
p11 p12 p13
p21 p22 p23
p31 p32 p33

=
fx 0 ox

0 fy oy

0 0 1

r11 r12 r13
r21 r22 r23
r31 r32 r33

= KR

t
P
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If we isolate : 

 

2.5 - From camera coordinates to image 
coordinates: perspective projection 

    
Let’s assume for now that we know a point in the camera coordinate frame.  
The focal length (the distance between the central projection and the image 
plane of the camera) is . Based on simple optical equations, we know that the 
point  in the image coordinate frame is defined as: 

 

Let’s take a closer look at the image plane. In our case, the image plane is a 
sensor which is used to capture the image. The image sensor has pixels. We 
introduce pixel coordinates  in the image sensor plane. The goal is to 
figure out how we can transform the image coordinates in millimetres to 
pixels. If  and  are pixel densities in  and  directions, then pixel 
coordinates  are: 

p14
p24
p34

=
fx 0 ox

0 fy oy

0 0 1

tx
ty
tz

= Kt

t

t = K−1
p14
p24
p34

f
xi

xi =
xc

zc
f

yi =
yc

zc
f

(u, v)

mx my x y
(u, v)

22 Mattia Tritto



 

 

The top-left corner of the image sensor is its origin. If the pixel  is the 
principle point (where the optical axis pierces the sensor), then: 

 

Of course ,  and  are unknown and they’re part of the calibration 
process. We combine these together in  and  (focal lengths in pixels in the  
and  directions): 

 

 are the intrinsic parameters of the camera. They represent 
the camera’s internal geometry. The equations that we have found are non-
linear equations. We use homogenous coordinates to extract linear equations. 

u = mxxi = mx f
xc

zc

v = myyi = my f
yc

zc

(ox, oy)

u = mxxi = mx f
xc

zc
+ ox

v = myyi = my f
yc

zc
+ oy

mx my f
fx fy x

y

u = mxxi = fx
xc

zc
+ ox

v = myyi = fy
yc

zc
+ oy

( fx, fy, ox, oy)
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Figure 10: Representation of the image plane and the image sensor



We can express  in homogeneous coordinates: 

 

If we rearrange this equations by using the intrinsic matrix and a vector 
containing the homogeneous coordinates of the 3D point in the camera 
coordinate frame: 

 

In a more compact form: 

 

(u, v)

[
u
v
1] ≡ [

ũ
ṽ
w̃] ≡

zcu
zcv
zc

=
fxxc + zcox

fyyc + zcoy
zc

[
ũ
ṽ
w̃] =

fx 0 ox 0
0 fy oy 0
0 0 1 0

xc
yc
zc

1

ũ = Mintx̃c = [K |0]x̃c
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2.6 - From world coordinates to camera 
coordinates 

Now we want to go from the world coordinates frame to the camera 
coordinates frame by using the position and orientation of the camera 
coordinate frame.  

This can be done by using the position  and orientation  of the camera in 
the world coordinate frame .  and  are the camera’s extrinsic 
parameters. 

Given the extrinsic parameters ( , ) of the camera, the camera-centric 
location of the point in the world coordinate frame is: 

 

Where the translation vector , is defined as follows: 

       

If we expand this equation: 

 

Rearranging this equation using homogeneous coordinates results in: 

cw R
𝕎 cw R

R cw

xc = R(xw − cw) = Rxw + t

t

t = − Rcw

xc =
xc
yc
zc

=
r11 r12 r13
r21 r22 r23
r31 r32 r33

xw
yw
zw

+
tx
ty
tz
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In a more compact form: 

 

2.7 - From world coordinates to image 
coordinates: combining the intrinsic and extrinsic 
matrix 

If we combine the two equations that we have found previously: 

 

We obtain a single equation, that transforms the world coordinates in image 
coordinates using the projection matrix : 

 

x̃c =

xc
yc
zc

1

=

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

xw
yw
zw

1

x̃c = Mextx̃w

{x̃c = Mextx̃w

ũ = Mintx̃c

P

ũ = MintMextx̃w = P x̃w
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2.8 - Correction of radial and tangential 
distortion 

After having estimated the intrinsic and extrinsic parameters of the camera, 
now we need to correct the radial and tangential distortion.  

As we said in 1.5 paragraph, radial distortion causes straight lines to appear 
curved. Radial distortion becomes larger the farther points are from the 
center of the image. This type of distortion can be represented as follows: 
 

Similarly, tangential distortion occurs because the image-taking lens is not 
aligned perfectly parallel to the imaging plane. So, some areas in the image 
may look nearer than expected. The amount of tangential distortion can be 
represented as below: 

 

In short, we need to find five parameters, known as distortion coefficients 
given by: 

 

{
xdistorted = x + [2p1x y + p2(r2 + 2x2)]
ydistorted = y + [p1(r2 + 2y2) + 2p2x y]

(k1, k2, k3, p1, p2)
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{
xdistorted = x(1 + k1r2 + k2r4 + k3r6)
ydistorted = y(1 + k1r2 + k2r4 + k3r6)



Chapter 3 - Stereo reconstruction 
with calibrated cameras 

3.1 - Why we use stereo cameras 

Given a calibrated camera, we cannot find the 3D scene point from a single 
2D image. A stereo system (a system of two cameras previously calibrated, 
displaced by a distance ) is a simple method for recovering the three 
dimensional structure of a scene from two images. 

3.2 - Backward projection: from 2D to 3D 

As we said earlier, given a calibrated camera, we cannot find the 3D scene 
point from a single 2D image. But we know that the corresponding 3D point 
must lie on an outgoing ray: 

b
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Figure 11: Representation of the ray where the 3D point 
lies



If we calibrate the camera with the steps provided in the first chapter, we’re 
able to write the equation of this ray. The perspective equations are the 
following: 

 

The same equations can be used to figure out what the equation of the 
outgoing ray is, given a point  in the image: 

 

To reconstruct exactly where the point lies, we use another camera and we 
triangulate the position. 

u = fx
xc

zc
+ ox

v = fy
yc

zc
+ oy

(u, v)

x = z
fx

(u − ox)

y = z
fy

(v − oy)
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Figure 12: Example of triangulation using a pair of identical cameras



The left camera and the right camera are identical but displaced along the 
horizontal direction by a distance . The distance  is called baseline. The 
system that include the two cameras is called a stereo system. 

We’re looking at one point in our left camera . That point corresponds 
to an outgoing ray. But let’s say somehow we are able to find the 
corresponding point in the right camera  (the projection of the same 
scene point in the right camera). We can shoot out another outgoing ray from 
the right camera. Wherever those two rays intersect is where the scene point 
lies. For now, let’s assume that the corresponding point in the right camera 

 is known for us (finding  given  is the stereo matching 
problem, the topic of the next paragraph). 

We have four equations, that are the perspective projection equations for the 
left and right camera: 

    

By simply solving these four equations we get an equation for ,  and : 

 

The coordinate  is called the depth of the point in the scene.  

The difference of the coordinates of the same scene point in the two images 
 is called disparity. 

Depth is inversely proportional to disparity. If we have a scene at infinity and 
if you take two images of the scene doesn’t really matter how far these 
cameras are with respect to each other (the baseline ), you’re going to get 

b b

(ul, vl)

(ur, vr)

(ur, vr) (ur, vr) (ul, vl)

ul = fx
x
z + ox

vl = fy
y
z + oy

ur = fx
x − b

z + ox

vr = fy
y
z + oy

x y z

x =
b(ul − ox)

ul − ur

y =
bfx(vl − oy)

fy(ul − ur)

z =
bfx

ul − ur

z

ul − ur

b
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two identical images. As the scene gets closer and closer you’re going to see 
differences in the projections. 

We want to use a stereo configuration where the baseline is large, because the 
larger the baseline, the larger is the disparity, and this reduces the errors 
when we’re trying to estimate the depth. 

3.3 - Stereo matching: finding disparities 

Measuring the disparity means estimating the depth of the scene. The goal is 
to find the disparity between left and right stereo pairs. 

On the right side we have the disparity map: the closer the points, the greater 
the disparity and the brighter it is in the disparity map. 

In this example, the disparity in the  direction is 0. It means that 
corresponding points must lie on the same horizontal line in both the images. 
But how do we compute disparity? We use template matching to achieve 
our goal. 

y
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Figure 13: A disparity map of a particular scene, credits: https://www.researchgate.net/figure/Ground-
truth-of-disparity-map-and-disparity-map-obtained-by-Belief-Propagation_fig6_224351635 

https://www.researchgate.net/figure/Ground-truth-of-disparity-map-and-disparity-map-obtained-by-Belief-Propagation_fig6_224351635
https://www.researchgate.net/figure/Ground-truth-of-disparity-map-and-disparity-map-obtained-by-Belief-Propagation_fig6_224351635
https://www.researchgate.net/figure/Ground-truth-of-disparity-map-and-disparity-map-obtained-by-Belief-Propagation_fig6_224351635


The first step is to take a little window on the left image, and then find the 
corresponding window in the right image. Of course we don’t need to look for 
the corresponding point in the intere image, we know that the corresponding 
point in the right image must lie in the same horizontal scan line: 

After the matching, we can compute the disparity  and the depth of the 
image: 

 

How large the windows should be? If the window is really small, we’re going 
to get good localization but high sensitivity to noise. On the other hand, if we 
use larger windows, we’re going to get more robust matches in terms of the 
depth of values but the disparity map is going to be more blurred especially 
at boundaries (poor localization). 

ul − ur

z =
bfx

ul − ur
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Figure 14: Representation of the template window in the left camera and the search line in the right 
camera, credits: https://www.researchgate.net/figure/Ground-truth-of-disparity-map-and-disparity-map-
obtained-by-Belief-Propagation_fig6_224351635 

https://www.researchgate.net/figure/Ground-truth-of-disparity-map-and-disparity-map-obtained-by-Belief-Propagation_fig6_224351635
https://www.researchgate.net/figure/Ground-truth-of-disparity-map-and-disparity-map-obtained-by-Belief-Propagation_fig6_224351635
https://www.researchgate.net/figure/Ground-truth-of-disparity-map-and-disparity-map-obtained-by-Belief-Propagation_fig6_224351635


 
Metrics used for template matching are: 

1) finding the pixel  with minimum sum of absolute differences: 

 

2) finding the pixel  with minimum sum of squared differences: 

 

3) finding the pixel  with maximum normalised cross-correlation: 

 

(k, l ) ∈ L

SAD(k, l ) = ∑
(i, j)∈T

|El(i, j ) − Er(i + k, j + l ) |

(k, l ) ∈ L

SSD(k, l ) = ∑
(i, j)∈T

|El(i, j ) − Er(i + k, j + l ) |2

(k, l ) ∈ L

NCC(k, l ) =
∑(i, j)∈T El(i, j )Er(i + k, j + l )

∑(i, j)∈T El(i, j )2 ∑(i, j)∈T El(i + k, j + l )2

33 Mattia Tritto

Figure 15: Differences between small and large windows sizes



Some problems of the stereo matching process are: 

• surfaces used for stereo matching must have non-repetitive texture (if 
there aren’t any texture there isn’t any match, but if there are repetitive 
texture there are multiple matches, and the stereo matching is not unique); 

• foreshortening effect makes matching really challenging. So often in 
stereo matching there are warping techniques to make the matching process 
more robust. 
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Chapter 4 - Stereo reconstruction 
with uncalibrated cameras 

4.1 - Overview of the uncalibrated stereo case 

Let’s take two arbitrary pictures of a 3D scene. Of course we have no idea of 
where these picture were taken from with respect to each other. But it turns 
out that if we know the internal parameters of the two cameras, then from 
these two arbitrary views we can compute the translation and rotation of one 
camera with respect to another camera. And once that’s done, we can 
reconstruct a three dimensional model of the scene. This is the problem of 
uncalibrated stereo.  

The internal parameters of both cameras are generally known. Often they’re 
available to us in terms of the method tag that goes with each image that’s 
captured in modern day digital cameras. Or if we don’t have these 
information, we can perform a simple calibration with the steps provided in 
the first chapter.  

Next, we’re going to use a small number of corresponding points in these two 
arbitrary views to estimate the fundamental matrix . Once we have , we 
can go ahead and find the rotation and translation of one camera with respect 
to each other. The stereo system is fully calibrated now. 

The last step is to compute depth. In order to compute depth, we’re going to  
find dense correspondences between the two images. Ideally, for every point in 
the left image, we want to know where the corresponding point in the right 
image is. This boils down to a 1D search in the right image using stereo 
matching. 

F F
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4.2 - Epipolar geometry 

In order to resolve this problem, we need to formulate the geometric 
relationship between the left and right camera. This is called epipolar 
geometry. Epipolar geometry tells us that points in the left and right image 
are related to each other through a single  matrix called the fundamental 
matrix, which contains the rotation and translation of one camera with 
respect to each other. The calibration problem boils down to finding the 
fundamental matrix. 
 

The projection of the center of the left camera into the right camera image 
and the projection of the center of the right camera on the left camera image 
these are referred to as the epipoles of the stereo system (  and ). Any given 
stereo system, it has a unique pair of  and . 

The epipolar plane of the scene point  is the plane formed by camera origins 
 and , epipoles  and  and scene point . So every scene point lies on a 

unique epipolar plane. 

3x3

el er
el er

P
Ol Or el er P
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Figure 16: Representation of the epipoles and the epipolar plane



We’re going to use the epipolar plane to set up what’s called the epipolar 
constraint. This includes the parameters  and . 

Let’s define a normal vector that is normal to this plane, defined as: 

 
 

So the epipolar constraint is the dot product of  and , and this is equal 
to zero: 

 

If we rewrite the epipolar constraint in matrix form we obtain: 

 

We can rearrange this equation, isolating in a single matrix the translation 
parameters  (translation matrix ): 

t R

n = t × xl

n xl

xl ⋅ (t × xl) = 0

[xl yl zl]
tyzl − tzyl

tzxl − txzl
txyl − tyxl

= 0

t Tx
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Figure 17: Representation of the epipolar plane



 

Now we add another constraint. We know  is the position of the right 
camera in the left camera’s frame and  is the orientation of the left 
camera in the right camera’s frame. Using these two, we can relate the 3D 
coordinates of a point P in the left camera to the 3D coordinates of the same 
point in the right camera. So we have: 

 

If we expand this equation: 

 

The product of translation matrix  and rotation matrix  is called the 
essential matrix . The main propriety of  is that we can actually decompose 
into  and . Given that  is a skew-symmetric matrix ( ) and  is 
an orthonormal matrix, it is possible to decouple  and  from  by using 
singular value decomposition: 

 

If  is known, we can calculate  and . In the end, we obtain: 

 

[xl yl zl]
0 −tz ty
tz 0 −tx

−ty tx 0

xl
yl
zl

= 0

t3×1
R3×3

xl = Rxr + t

xl
yl
zl

=
r11 r12 r13
r21 r22 r23
r31 r32 r33

[
xr
yr
zr

] +
tx
ty
tz

Tx R
E E

Tx R Tx aij = − aij R
Tx R E

e11 e12 e13
e21 e22 e23
e31 e32 e33

=
0 −tz ty
tz 0 −tx

−ty tx 0

r11 r12 r13
r21 r22 r23
r31 r32 r33

E t R

[xl yl zl]
e11 e12 e13
e21 e22 e23
e31 e32 e33

[
xr
yr
zr

] = 0
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Unfortunately, we don’t have  and . But what we do know corresponding 
points in image coordinates. Let’s go back and take the perspective equations 
for the left camera: 

 

Now using homogenous coordinates we can write: 

 

Where  is known to us, and is the camera matrix of the left camera. We get 
such an equation for each one of our views: 

    

We can rewrite these two in a more compact form: 

     

If we substitute these two in the epipolar constraint, we obtain: 

 

 

xl xr

{
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But in this expression we still have  and  which are the 3D coordinates 
that we don’t know. Assuming that  and  (the depth of any point 
cannot be zero, if it is zero the point lies at the center of projection) the rest 
of the equation should be equal to 0. So we can simply eliminate  and  
from this equation to get this: 

 

Now we have scene points expressed in terms of the image coordinates. The 
only unknown matrix is . The product of ,  and  is called the 
fundamental matrix . So the equation becomes: 

 

If we find the fundamental matrix, it is simple to extract the essential matrix 
: 

 

zl zr
zl ≠ 0 zr ≠ 0

zl zr

[ul vl 1] K−1T

l

e11 e12 e13
e21 e22 e23
e31 e32 e33

K−1
r [

ur
vr

1 ] = 0

E K−1T

l E K−1T
r

F

[ul vl 1]
f11 f12 f13
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f31 f32 f33
[
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vr
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E
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l FKr
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4.3 - Estimating the fundamental matrix F 

The first step is to find a small number  of corresponding features in the two 
images given to us using SIFT algorithm: 

The image coordinates of these points are the following: 

     

For each correspondence , we can write out our epipolar constraint: 

 

If we simply write out this expression for very correspondence  we get  
linear equations, that can be written to form a linear system: 

m

(u(1)
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l )…(u(m)
l , v(m)

l ) (u(1)
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i
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Figure 18: Example of SIFT algorithm applied on these two photos of Arc de Triomphe, credits: https://
youtu.be/erpiFudDBlg 

https://youtu.be/erpiFudDBlg
https://youtu.be/erpiFudDBlg


 

In a more compact form: 

 

If we look at the fundamental matrix, it is acting on homogeneous 
coordinates. So if we take the epipolar constraint we obtain: 

 

If we multiply the fundamental matrix  with a constant , it doesn’t matter. 
In other words, the fundamental matrix  and  describe the same epipolar 
geometry.  is defined only up to a scale. 

We set the scale so that: 

 

So, we want  as close to  as possible and . 

In mathematical terms: 

 such that  

u(1)
l u(1)

r u(1)
l v(1)

r u(1)
l v(1)

l u(1)
r v(1)

l v(1)
r v(1)

l u(1)
r v(1)

r 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

u(i)
l u(i)

r u(i)
l v(i)

r u(i)
l v(i)

l u(i)
r v(i)

l v(i)
r v(i)

l u(i)
r v(i)

r 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

u(m)
l u(m)

r u(m)
l v(m)

r u(m)
l v(m)

l u(m)
r v(m)

l v(m)
r v(m)

l u(m)
r v(m)

r 1

f11

f12

f13

f21

f22

f23

f31

f32

f33

= 0

Af = 0

[ul vl 1]
f11 f12 f13

f21 f22 f23

f31 f32 f33
[

ur
vr

1 ] = 0 = [ul vl 1]
k f11 k f12 k f13

k f21 k f22 k f23

k f31 k f32 k f33
[

ur
vr

1 ]
F k

F kF
F

∥f∥2 = 1

Af 0 ∥f∥2 = 1

min
f

∥Af∥2 ∥f∥2 = 1

42 Mattia Tritto



This is equivalent to resolve this eigenvalue problem: 

 

In other words, the  that we’re looking for is the smallest eigenvalue  of the 
matrix  that minimize the loss function . Once we have , we 
rearrange the elements of  to form the fundamental matrix . Now we can 
compute the essential matrix  by using this equation: 

 

And now we can decompose  in  and  using singular value decomposition: 

 

4.4 - Finding correspondences 

In uncalibrated stereo, finding correspondences it is equivalent to the 
calibrated stereo case scenario (1D search after having found  and ). But 
the question is on which line should be searching? This bring back to the 
epipolar geometry, in particular to the definition of epipolar line: 
 

AT f = λf

f λ
AT A L(f) f

f F
E

E = K−1T

l FKr

E R t

E = TxR

R t

43 Mattia Tritto

Figure 19: Representation of epipolar lines



The epipolar lines are the intersection of image planes and the epipolar plane. 
Every scene has two corresponding epipolar lines, one each on the two image 
planes. 

So given a point in one image, the corresponding point in the other image 
must lie on the epipolar line. 

If we know the fundamental matrix , we can derive the equation of the 
straight line in the right image along which the search needs to be done. 

The epipolar constraint is: 

 

In this case we only don’t know . Expanding the matrix equation: 

 

So the equation for the right epipolar line is: 

 

Likewise, we can calculate epipolar line in the left image for a point in the 
right image. 

F
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This is an example: 

Now if we want to find the point on the left image on the right image, we 
have to search in the epipolar line, using the stereo matching algorithm 
described in the 3.3 paragraph. 
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Figure 20: Given a point in the left image, the correspondent point in the right image must lie on the epipolar 
line, credits: https://youtu.be/erpiFudDBlg

https://youtu.be/erpiFudDBlg


Chapter 5 - ORB-SLAM3 

5.1 - What is ORB-SLAM3 

ORB-SLAM3 is a SLAM system (Visual Simultaneous Localization and 
Mapping). It is a software library developed for robots and other devices 
equipped with a camera that allows them to build a map of their environment 
and localize themselves within it, all in real-time.  

The system is based on the ORB (Oriented FAST and Rotated BRIEF) 
feature detector and descriptor, which allows it to efficiently detect and match 
visual features in an image. ORB-SLAM3 uses a combination of monocular, 
stereo, and RGB-D cameras to estimate the camera pose and build a 3D map 
of the environment.  

The system has several advanced features, such as loop closing, relocalization, 
and dynamic object detection, that improve its accuracy and robustness in 
real-world scenarios. It has been widely used in robotics, augmented reality, 
and autonomous driving applications. 
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Figure 21: Map Viewer of ORB-SLAM3



5.2 - Stereo camera calibration using OpenCV 

This paragraph describes the setup for stereo calibration using a dataset of 
stereo images of chessboards patterns taken at different angles and views. The 
image dataset was taken online, and contains 25 stereo images of 
checkerboard patterns (https://www.kaggle.com/datasets/danielwe14/
stereocamera-chessboard-pictures). 

The script used for stereo calibration is written in a generic way, making it 
adaptable for any stereo camera setup. It doesn't need to know the baseline: 
it automatically detects and calculates it from the stereo images. 

The first thing to do is to specify the number of squares on the  and  axis, 
and also the frame sizes of the images: 
 

After loading all the images present in the stereoLeft and stereoRight 
directories, we can loop through every stereo pairs and transform the images 
to black and white. These images are passed to the findChessboardCorners() 
function, that requires what kind of pattern we are looking for and the black 
and white images.  

It returns the corner points and a boolean value which will be true if the 
pattern is recognised: 

x y
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chessboardSize = (7, 11)
frameSize = (964, 686)

imgL = cv.imread(imgLeft)
imgR = cv.imread(imgRight)
grayL = cv.cvtColor(imgL, cv.COLOR_BGR2GRAY)
grayR = cv.cvtColor(imgR, cv.COLOR_BGR2GRAY)

retL, cornersL = cv.findChessboardCorners(grayL, 
chessboardSize, None)
retR, cornersR = cv.findChessboardCorners(grayR, 
chessboardSize, None)

https://www.kaggle.com/datasets/danielwe14/stereocamera-chessboard-pictures
https://www.kaggle.com/datasets/danielwe14/stereocamera-chessboard-pictures
https://www.kaggle.com/datasets/danielwe14/stereocamera-chessboard-pictures


Once the script find the corners, we can increase their accuracy using 
cv.cornerSubPix(). We can also draw the pattern using 
cv.drawChessboardCorners(): 
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cornersL = cv.cornerSubPix(grayL, cornersL, (11, 11), 
(-1,-1), criteria)
imgpointsL.append(cornersL)
cornersR = cv.cornerSubPix(grayR, cornersR, (11, 11), 
(-1, -1), criteria)
imgpointsR.append(cornersR)

cv.drawChessboardCorners(imgL, chessboardSize, cornersL, 
retL)
cv.imshow('img left', imgL)
cv.drawChessboardCorners(imgR, chessboardSize, cornersR, 
retR)
cv.imshow('img right', imgR)

Figure 22: OpenCV recognizes and highlights the chessboard corners on the original image



Now that we have our object points and image points, we are ready to go for 
the stereo calibration. We can use the function cv.calibrateCamera() which 
returns the camera matrix, distortion coefficients, rotation and translation 
vectors for both the left and right camera: 
 

We can refine the camera matrix based on a free scaling parameter using 
cv.getOptimalNewCameraMatrix(). If the scaling parameter , it returns 
undistorted image with minimum unwanted pixels. So it may even remove 
some pixels at image corners. If , all pixels are retained with some extra 
black images. This function also returns an image ROI which can be used to 
crop the result: 

α = 0

α = 1
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retR, cameraMatrixR, distorsionCoefficientsR, 
rotationVectorsR, traslationVectorR = 
cv.calibrateCamera(objectPointsoints, imgpointsR, 
frameSize, None, None)

heigthR, widthR, channelsR = imgR.shape
newCameraMatrixR, roi_R = 
cv.getOptimalNewCameraMatrix(cameraMatrixR, 
distorsionCoefficientsR, (widthR, heigthR), 1, (widthR, 
heigthR))



Now we want to find the relative position of one camera with respect to the 
other camera. The function cv.stereoCalibrate() computes  such that: 

 

Therefore, one can compute the coordinate representation of a 3D point for 
the second camera's coordinate system when given the point's coordinate 
representation in the first camera's coordinate system: 

 

This function also computes the essential matrix  and the fundamental 
matrix : 
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flags = 0
flags |= cv.CALIB_FIX_INTRINSIC
criteria_stereo = (cv.TERM_CRITERIA_EPS + 
cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)

retStereo, newCameraMatrixL, distorsionCoefficientsL, 
newCameraMatrixR, distorsionCoefficientsR, 
rot ,trans ,essentialMatrix, fundamentalMatrix = 
cv.stereoCalibrate(objectPointsoints, imgpointsL, 
imgpointsR, newCameraMatrixL, distorsionCoefficientsL, 
newCameraMatrixR, distorsionCoefficientsR, grayL.shape [:: 
-1], criteria_stereo, flags)



 

The function cv.stereoRectify() computes the rotation matrices for each 
camera that (virtually) make both camera image planes the same plane. 
Consequently, this makes all the epipolar lines parallel and thus simplifies the 
dense stereo correspondence problem. The function takes the matrices 
computed by cv.stereoCalibrate() as input. As output, it provides two rotation 
matrices and also two projection matrices in the new coordinates. 
 

The new matrices, together with  and , can then be passed to 
cv.initUndistortRectifyMap() to initialize the rectification map for each 
camera. Computes the undistortion and rectification transformation map. 

The function computes the joint undistortion and rectification transformation 
and represents the result in the form of maps. The undistorted image looks 
like original, as if it is captured with a camera with zero distortion.  

The function actually builds the maps for the inverse mapping algorithm that 
is used by remap. That is, for each pixel   in the destination (corrected 
and rectified) image, the function computes the corresponding coordinates in 
the source image (that is, in the original image from camera): 

Here below, we can see a comparison between the original image, and the 
corresponding rectified image: 
 

F = cameraMatrix2T ⋅ E ⋅ cameraMatrix−1

R1 R2

(u, v)
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rectifyScale = 1
rectL, rectR, projMatrixL, projMatrixR, Q, roi_L, roi_R = 
cv.stereoRectify(newCameraMatrixL, distorsionCoefficientsL, 
newCameraMatrixR, distorsionCoefficientsR, 
grayL.shape[::-1], rot, trans, rectifyScale, (0,0))



5.3 - ORB-SLAM3 installation using Docker 

For the installation of ORB-SLAM3, a Docker environment was utilized. 
Docker provides a flexible and independent platform that allows the seamless 
deployment of ORB-SLAM3 regardless of the host machine's specifications.  

Docker ensures compatibility and ease of installation, enabling future 
researchers and developers to replicate the experimental setup without 
concerns regarding system dependencies or configurations. 

The initial step involved the installation of Docker by following the 
instructions provided on its official website (https://docs.docker.com/engine/
install/ubuntu/). This included carefully following the installation guidelines, 
including any necessary post-installation steps outlined in the documentation.  

Then, we’ve cloned the official git repository of ORB-SLAM3 (https://
github.com/UZ-SLAMLab/ORB_SLAM3) with the command: 

After placing the Dockerfile inside the ORB-SLAM3 directory (Appendix 
A.2), the next step involved executing the command: 
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Figure 23: original image VS rectified image. Radial and tangential distortion is no longer visible to the naked eye

git clone https://github.com/UZ-SLAMLab/ORB_SLAM3 

docker build --tag orb-slam3:1.0 .

https://github.com/UZ-SLAMLab/ORB_SLAM3
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
https://github.com/UZ-SLAMLab/ORB_SLAM3
https://github.com/UZ-SLAMLab/ORB_SLAM3


This command initiated the build process, leveraging the Dockerfile to 
construct a Docker image specifically tailored for ORB-SLAM3. The provided 
tag orb-slam3:1.0 served as an identifier for the generated image, ensuring its 
distinctiveness and version control. This build command triggered the 
execution of the instructions specified in the Dockerfile, including the 
installation of necessary dependencies, configuration settings, and the setup of 
the ORB-SLAM3 environment. 

Following the successful build of the ORB-SLAM3 Docker image, the 
subsequent step involved executing the command: 

This command created a Docker container named orb-slam3 based on the 
previously built image orb-slam3:1.0. 

After creating the ORB-SLAM3 Docker container, the next step involved 
executing the command: 

This command granted permission for the root user inside the container to 
access the host's X server. The X server is responsible for managing graphical 
user interfaces, and by allowing the container's root user to connect to it, it 
enabled the display of visual elements from within the container on the host 
system. 

To execute the ORB-SLAM3 Docker container, the following command was 
utilized:  

By utilizing this command, the ORB-SLAM3 Docker container was launched, 
enabling the execution of the ORB-SLAM3 application while leveraging the 
host's resources and graphical capabilities. 
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docker create --name orb-slam3 orb-slam3:1.0

xhost +local:root

docker run -it --rm --net=host --volume="/dev:/dev" -e DISPLAY=unix$DISPLAY -v /

tmp/.X11-unix:/tmp/.X11-unix:rw --privileged orb-slam3:1.0



Inside the ORB-SLAM3 Docker container, the next step involved navigating 
to the ORB-SLAM3 folder and running the build_ros.sh script. To do this, 
execute the following commands within the container: 

The build_ros.sh script is designed to facilitate the building and configuration 
of ORB-SLAM3 with ROS. By executing this script, the necessary 
dependencies, libraries, and configurations for ROS integration are set up, 
ensuring the smooth operation of ORB-SLAM3 within the ROS ecosystem. 

Once the ORB-SLAM3 compilation process is complete, you can proceed with 
connecting the camera and running the subsequent commands: 

1. Start the ROS core: 

2. Launch the usb_cam package to interface with the USB camera: 
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./build_ros.sh

roslaunch usb_cam usb_cam-test.launch &

roscore &



5.4 - Trajectory estimation using Python 

After setting up our stereo system with complete calibration, our next step is 
to estimate the trajectory. To achieve this, we will be using a python script 
that is available in the ORB-SLAM3 repository (associate.py and 
evaluate_ate_scale.py in the evaluation folder). 

We used the EuRoC dataset as an example: it includes a sequence of "ground 
truth" images, making it a suitable choice for our purposes. 

EuRoC dataset is a publicly available dataset for evaluating visual odometry, 
visual SLAM and related algorithms. It was created by the European 
Roboticists Association and contains stereo and monocular sequences recorded 
from a Micro Aerial Vehicle (MAV) flying in different environments, such as 
indoor, outdoor, and forest areas.  

The dataset provides ground-truth camera poses and high-precision 
measurements of the MAV's motion, making it a valuable resource for 
researchers and developers working on visual odometry and SLAM 
algorithms. 

The first thing to do is to launch the simulation using this command: 

55 Mattia Tritto

./Examples/Stereo/stereo_euroc ./Vocabulary/ORBvoc.txt ./Examples/Stereo/EuRoC.yaml ~/

Datasets/EuRoC/MH01 ./Examples/Stereo/EuRoC_TimeStamps/MH01.txt dataset-MH01_stereo



 
After launching the simulation, we can run the evaluation.py script which 
estimates the trajectory followed by the camera and, with the —verbose flag, 
provides a series of errors that can be used to estimate the goodness of the 
algorithm (it is essential to use the Python 2.7 interpreter and not version 3 
for this code, as it has not been updated to run on version 3): 

 
Which gives the following output:  
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Figure 24: example of the output followed by the previous command

python2.7 evaluation/evaluate_ate_scale.py --verbose evaluation/Ground_truth/

EuRoC_left_cam/MH01_GT.txt f_dataset-MH01_stereo.txt --plot MH01_stereo.pdf

compared_pose_pairs 3638 pairs 

absolute_translational_error.rmse 0.035956 m 

absolute_translational_error.mean 0.033244 m 

absolute_translational_error.median 0.036838 m 

absolute_translational_error.std 0.013701 m 

absolute_translational_error.min 0.002904 m 

absolute_translational_error.max 0.104954 m 



The results are saved in the MH01_stereo.pdf: 

As is evident from the figure, the estimated trajectory in blue aligns precisely 
with the ground truth trajectory in red. This indicates that the parameters 
specified in the .yaml file are appropriate for the given dataset. 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Figure 25: trajectory estimation of the EuRoC stereo dataset on the XY plane



Conclusions 

In conclusion, the successful implementation of the stereo camera calibration 
script, as well as the installation of ORB-SLAM3 highlight the significant 
advancements in the field of simultaneous localization and mapping (SLAM).  

The demonstrated effectiveness of the stereo camera calibration script 
reaffirms its ability to accurately estimate intrinsic, extrinsic parameters and 
the essential matrix , enabling precise depth perception and trajectory 
estimation. Moreover, the satisfactory performance of ORB-SLAM3 showcases 
its robustness and efficiency in real-time camera tracking and mapping.  

Additionally, the introduction of Isaac SLAM (developed by NVIDIA) as an 
alternative solution further expands the options available for researchers and 
developers, with its unique features and capabilities. These advancements 
hold great promise for various applications, including robotics and 
autonomous navigation. As technology continues to evolve, the combination of 
accurate calibration scripts and advanced SLAM algorithms paves the way for 
even more sophisticated and reliable systems, ultimately driving progress in 
the field and opening up new possibilities for future research and 
development. 

E
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